期刊文献+

具有时滞增长反应及脉冲输入的Monod-Haldane恒化器模型分析 被引量:2

Analysis of Monod-Haldane chemostat model with time delay and pulsed input nutrient concentration in polluted
下载PDF
导出
摘要 考虑了一类在污染的环境下具有时滞增长反应及脉冲输入营养液的Monod-Haldane恒化器模型,并且引入了对一种微生物生长有抑制作用的抑制剂.获得了微生物灭绝周期解全局吸引的充分条件,并运用脉冲时滞微分方程的相关理论和方法,证明了系统在适当的条件下是持久的.结果表明:该时滞和污染环境能导致微生物灭绝. A Monod-Haldane chemostat model with time delay and pulsed input nutrient concentration in a polluted environment was considered,and an external inhibitor for one microorganism was broughtin.The sufficient conditions for the global attractant of periodic solution of microorganism extinction were obtained.Furthermore,by using corresponding theories and methods of impulsive differential equation,it is proved that the system is permanent under appropriate conditions.The results show that time delays and the polluted environment can lead the microorganism species to be extinct.
出处 《上海理工大学学报》 CAS 北大核心 2010年第6期539-544,548,共7页 Journal of University of Shanghai For Science and Technology
关键词 抑制剂 脉冲输入 时滞 恒化器模型 灭绝 持久性 inhibitor impulsive input time delay chemostat model extinction permanence
  • 相关文献

参考文献1

二级参考文献37

  • 1陈兰荪 陈健.非线性生物动力系统[M].北京:科学出版社,1983.111-162.
  • 2Hsu S B. A competition model for a seasonally fluctuating nutrient[J]. Journal of Mathematical Biology, 1980,9(2): 115-132.
  • 3Smith H L.Competitive coexistence in an oscillating chemostat[J].SIAM Journal on Applied Mathematics,1981,40(3):498-522.
  • 4Butler G J, Hsu S B, Waltman P. A mathematical model of the chemostat with periodic washout rate [ J ]. SIAM Journal on Applied Mathematics, 1985,45(3) :435-449.
  • 5Pilyugin S S,Waltman P.Competition in the unstirred chemostat with periodic input and washout [J].SIAM Journal on Applied Mathematics,1999,59(4):1157-1177.
  • 6Simth H L,Waltman P.The Theory of the Chemostat[M].Cambridge:Cambridge University Press,1995.
  • 7Hsu S B,Hubbell S P,Waltman P.A mathematical theory for single nutrient competition in continuous cultures of micro-organisms[J].SIAM journal on Applied Mathematics,1977,32(2):366-382.
  • 8Picket A M.Growth in a changing environment[A].In:bazin M J,Ed.Microbial population Dynamics[C].Florida:CRC Press,1982.
  • 9Monod J.La technique de culture continue: théorie et applications[J]. Ann Inst Pasteur, 1950, 79 (19) : 390-401.
  • 10Hansen S R, Hubbell S P. Single-nutrient microbial competition: qualitative agreement between experimental and theoretically forecast outcomes[J]. Science, 1980,207(4438) : 1491-1493.

共引文献12

同被引文献7

  • 1Smith H,Waltman P. The theory of the chemostat[M].{H}Cambridge:Cambridge University Press,1995.
  • 2Jiang D,Yu J,Ji C. Asymptotic behaviour of global positive solution to a stochastic SIR model[J].{H}Mathematical and Computer Modelling,2011,(1/2):221-232.
  • 3Ji C,Jiang D. Dynamics of a stochastic density dependent predator-prey system with Beddington-DeAndelis functional response[J].{H}Journal of Mathematical Analysis and Applications,2011,(01):441-453.
  • 4Ji C,Jiang D,Shi N. A note on a predator-prey model with modified leslie-gower and holling-type Ⅱ schemes with stochastic perturbation[J].{H}Journal of Mathematical Analysis and Applications,2011,(01):435-440.
  • 5Ji C,Jiang D,Li X. Qualitative analysis of a stochastic ratio-dependent predator-prey system[J].{H}Journal of Computational and Applied Mathematics,2011,(05):1326-1341.
  • 6凌志超,张天四.恒化器中一类具有非常数消耗率微生物培养模型的定性分析[J].上海理工大学学报,2012,34(4):373-376. 被引量:7
  • 7刘伟华,李冬梅.脉冲接种下的双时滞的SIRS模型的稳定性与持久性[J].哈尔滨理工大学学报,2015,20(4):11-15. 被引量:3

引证文献2

二级引证文献11

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部