期刊文献+

KB镜成像模拟以及与菲涅耳波带板成像的比较 被引量:2

Kirkpatrick-Baez Mirror Imaging Simulation and Comparison with Fresnel Zone Plate Imaging
下载PDF
导出
摘要 采用坐标变换方法自编光线追迹程序模拟了Kirkpatrick-Baez镜在X射线波段的掠入射成像,获得了视场、分辨率等结果.比较了给定参量条件下Kirkpatrick-Baez镜与菲涅耳波带板两种高分辨X射线成像的特性,给出两者各自适用范围.Kirkpatrick-Baez镜成像有比较高的系统效率,在视场中心的空间分辨能力可达0.71μm,但偏离视场中心±200μm,空间分辨能力显著下降至6μm,适用于较小视场的成像.菲涅耳波带板成像不仅在视场中心可以实现0.39μm的空间分辨能力,偏离视场中心达±13 mm,空间分辨能力也几乎不变,可实现大视场高分辨成像. The imaging characteristics of a Kirkpatrick-Baez(KB) mirror were studied using a home-developed code.The numerical recipe of the code was based on coordinate transformation of ray tracing.The spatial resolution and the field of view were obtained.For given parameters,the properties of the KB mirror imaging were compared to that of a Fresnel zone plate(FZP),and the application range of the two imaging techniques was given.The KB mirror has a relatively high efficiency.Its spatial resolution is 0.71 μm in the centre of the field of view,but decreases to 6μm as the object position deviates from the field-of-view center by±200μm,thus it is suitable for small field-of-view imaging.The FZP can realize a higher spatial resolution up to 0.39μm and the resolution almost unchanges within±13 mm field of view,which can be applied to large field-of-view,high-resolution X-ray imaging.
出处 《光子学报》 EI CAS CSCD 北大核心 2010年第12期2158-2162,共5页 Acta Photonica Sinica
基金 国家高技术研究发展计划(2008AA8041206) 中国科学院知识创新工程(KJCX2-YW-N28 KJCX2-YW-N36)资助
关键词 X射线成像 Kirkpatrick-Baez镜 菲涅耳波带板 空间分辨率 视场 X-ray imaging Kirkpatrick-Baez(KB) mirror Fresnel Zone Plate(FZP) Spatial resolution Field of view
  • 相关文献

参考文献3

二级参考文献40

共引文献6

同被引文献15

  • 1Lindl J, Amendt P, Berger R L, et al. The physics basis for ignition using indirect-drive targets on the National Ignition Facility [J]. Phys- ics of Plasmas, 2004, 11(2) : 339-491.
  • 2Kozioziemski B J, Koch J A, Barty A, et al. Quantitative characterization of inertial confinement fusion capsules using phase contrast en- hanced X-ray imaging [J]. Journal of Applied Physics, 2005, 97: 063103.
  • 3Wang Kai, Lei Halle, Li Jun, et al. Characterization of inertial confinement fusion targets using X-ray phase contrast imaging[J]. Optics Communications, 2014, 332: 9-13.
  • 4Koch J A, Landen O L, Suter L J, et al. Refraction-enhanced backlit imaging of axially symmetric inertial confinement fusion plasmas[J]. Applied Optics, 2013, 52(15) : 3538-3556.
  • 5Kirz J. Phase zone plates for X rays and extreme UV [J]. Journal of the Optical Society of America, 1974, 64(3) :301-309.
  • 6Chao W L, Harteneck B D, Liddle J A, et al. Soft X-ray microscopy at a spatial resolution better than 15 nm[J]. Nature, 2005, 435 (7046) : 1210-1213.
  • 7Azechi H, Tamari Y. High-spatial-resolution imaging by Fresnel phase zone plate[J]. Journal of Plasma and Fusion Research, 2003, 79 (4) : 398-401.
  • 8Pogany A, Gao D, Wilkins S W. Contrast and resolution in imaging with a microfocus X-ray source[J]. Review of Scientific Instruments, 1997, 68(7): 2774-2782.
  • 9Xiao T Q, Bergamaschia A, Dreossi D, et al. Effect of spatial coherence on application of in-line phase contrast imaging to synchrotron ra- diation mammography[J]. Nuclear Instruments and Methods in Physics Research A, 2005,548(1) : 155-162.
  • 10Koch J A, Landen O L, Kozioziemski B J, et al. Refraction-enhanced X-ray radiography for inertial confinement fusion and laser produced plasma applications[J]. Journal of Applied Physics, 2009, 105: 113112.

引证文献2

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部