期刊文献+

不同电信欠费率下信用评分问题 被引量:1

Credit Scoring Used for Different Arrears Rates
原文传递
导出
摘要 为提高信用评分的公平性和合理性,研究了电信领域不同欠费率下的初始信用评分问题.在一种电信客户初始信用评分模型的基础上,分别采用遗传算法和蚁群算法,对不同欠费率的客户群体进行数据挖掘,通过评价函数得到最优信用权重分配方案,并对实验结果进行了分析和比较.最后,对原信用评分模型进行了改进,解决了原模型在高欠费率情况下算法解不理想问题.实验结果表明,在采用评分模型进行信用评分时,应针对不同的欠费率群体,可选择不同的信用评分算法.此外,在建立信用评分模型时,需要考虑不同欠费率的情况. The initial credit scoring of telecom customers for different arrears rates is studied to improve the fairness and reasonableness of credit scoring. Using genetic algorithm and ant colony algorithm respectively, the weights of the customer attributes with respect to the credit are obtained to mine important knowledge from the customer data sets with different arrears rates. A credit scoring model added evaluation factor is proposed in order to find the optimum solution of credit weights in the case of high rate of arrears. Experiments indicate that it is necessary to select different scoring algorithm or different scoring model for the group with different arrears rates.
出处 《北京邮电大学学报》 EI CAS CSCD 北大核心 2010年第6期88-92,共5页 Journal of Beijing University of Posts and Telecommunications
基金 国家自然科学基金(60872051) 中央高校基本科研业务费专项资金资助项目(2009RC0203) 北京市教育委员会共建项目
关键词 电信客户 欠费率 信用评分 telecom customer arrears rate credit scoring
  • 相关文献

参考文献11

  • 1杨忠,胡建华,王清心,周会团,周海河.电信数据仓库中欠费模型的开发实践[J].云南大学学报(自然科学版),2005,27(S2):363-366. 被引量:1
  • 2杨忠,戴世雄,严南等.数据挖掘技术在电信欠费客户流失中的应用.中国水运,2007,.
  • 3Wang J M,Wen Y Q.Application of data mining in arrear risks prediction of power customer[C] //2008 International Symposium on Knowledge Acquisition and Modeling.Wuhan:IEEE Press,2008:206-210.
  • 4Scheurmann E,Matthews C.Neural network classifers in arrears management[C] //15th International Conference on Artificial Neural Networks:Biological Inspirations.Warsaw,Poland:Springer Verlag,2005:325-330.
  • 5夏国恩,陈云,金炜东.基于支持向量机的电信客户欠费评估[J].科技管理研究,2006,26(2):76-78. 被引量:5
  • 6Yang Z C,Kuang H.Credit evaluation for mobile customers using artificial immune algorithms[C] //Proceedings of the 7th World Congress on Intelligent Control and Automation.Chongqing:IEEE Press,2008:7021-7025.
  • 7Tezuka M,Ito Y,Munakata S.Genetic algorithm approach to design covariates of binomial logit model for estimation of default probability[C] //2007 IEEE Congress on Evolutionary Computation.Singapore:IEEE Press,2008:4344-4349.
  • 8Jia X J,Liu Zh Y.Study of credit risk with stochastic default intensity based on Markov chain[C] //2008 International Conference on Wireless Communications,Networking and Mobile Computing.Dalian:IEEE Press,2008:1-4.
  • 9张玉洁,孟祥武.基于遗传算法的电信客户初始信用度分配算法[J].北京邮电大学学报,2002,25(2):74-77. 被引量:8
  • 10Huang S L,Li L,Tan Z F.Evaluating electric ILM customers'default risk based on fuzzy set theory[C] //4th International Conference on Fuzzy Systems and Knowledge Discovery.Haikou:IEEE Press,2007:478-482.

二级参考文献27

  • 1卫巍,陈荣秋.“漏斗模型”在生产控制中的应用[J].管理工程学报,1994,8(2):122-131. 被引量:20
  • 2赵悦,穆志纯.基于MBBC算法的电信客户信用度评分模型[J].北京工商大学学报(自然科学版),2006,24(3):44-46. 被引量:4
  • 3Thomas L C, Edelman D B, Crook J N. Credit scoring and its applications [ M ]. Philadelphia : Society for Industrial and Applied Mathematics, 2002.
  • 4Sarlija N, Bensic M, Marijana Z S. Modeling customer revolving credit scoring using logistic regression, survival analysis and neural networks[ C ]//The 7th WSEAS International Conference on Neural Networks. Croatia: WSEAS, 2006- 164-169.
  • 5Hussein A, Pointon J, Ahmed E M. Neural nets versus conventional techniques in credit scoring in Egyptian banking[ J]. Expert Systems with Applications, 2008, 35 (3) : 1275-1292.
  • 6Wang Shuangcheng, Leng Cuiping, Zhang Piqiang. Conditional markov network hybrid classifiers using on client credit scoring[ C] //2008 ISCSCT. Shanghai: IEEE Computer Society, 2008: 549-553.
  • 7West D. Neural network credit scoring models[J]. Computers and Operations Research, 2000, 27 (11-12): 1131-1152.
  • 8Zhang Defu, Hifi M, Chen Qingshan, et al. A hybrid credit scoring model based on genetic programming and support vector machines[ C]//2008 International Conference on Natural Computation. Jinan: IEEE Computer Society, 2008: 8-12.
  • 9Tsaih R, Liu Y J, Liu W CH, et al. Credit scoring system for small business loans [ J ]. Decision Support Systems, 2004, 38(1): 91-99.
  • 10Chuang Ch L, Lin R H. Constructing a reassigning credit scoring model [ J]. Expert Systems with Applications, 2009, 36(2): 1685-1694.

共引文献14

同被引文献3

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部