期刊文献+

Gray-Scott模型的动态分歧分析 被引量:1

Dynamic Bifurcation Analysis of the Gary-Scott Model
下载PDF
导出
摘要 该文以Gray-Scott模型为研究对象,用数学的方法研究该系统的动态分歧.主要是运用线性全连续场普理论,中心流形约化方法及跃迁理论,得到了模型在一定条件下的跃迁类型的判别数,并判断了跃迁类型,给出了分歧解的表达式. This paper studies the Gary-Stott model by using mathematical methods,including the Spectrum Theory of the linear completely continuous fields,Center Manifold Reduction and Transition Theory.With certain conditions,the distinguished number of transition type of the model is obtained,the type of transition is judged,the expression of the bifurcated solution is given.
作者 侯智博
出处 《乐山师范学院学报》 2010年第12期1-4,共4页 Journal of Leshan Normal University
关键词 Gray-Scott模型 中心流形函数 跃迁 动态分歧 Gary-Scott model Center Manifold function transition Dynamic Bifurcation
  • 相关文献

参考文献1

二级参考文献27

  • 1Muratov C B, Osipov V V. Static spike autosolutions in the Gray-Scott model. J Phys A, Math Gen, 2000,33:8893-8916
  • 2Nicolis G. Patterns of spatio-temporal organization in chemical and biochemical kinetics. SIAM-AMS Proc,1974, 8:33-58
  • 3Peng R, Wang M X. Positive steady-state solutions of the Noyes-Field model for Belousov-Zhabotinskii reaction. Nonlinear Anal, TMA, 2004, 56:451-464
  • 4Peng R, Wang M X. Pattern formation in the Brusselator system. J Math Anal Appl, 2005, 309:151-166
  • 5Wang M X. Non-constant positive steady-states of the Sel'kov model. J Differ Equations, 2003, 190:600-420
  • 6Wu J H, Wolkowicz G. A system of resource-based growth models with two resources in the unstirred chemostat. J Differ Equations, 2001, 172:300-332
  • 7Chen W Y, Peng R. Stationary patterns created by cross-diffusion for the competitor-competitor-mutualist model. J Math Anal Appl, 2004, 291:550-564
  • 8Du Y H, Lou Y. Qualitative behavior of positive solutions of a predator-prey model: effects of saturation. Proc Roy Soc Edinburgh A, 2001, 131:321-349
  • 9Lou Y, Martinez S, Ni W M. On 3 × 3 Lotka-Volterra competition systems with cross-diffusion. Discrete Cont Dyn S, 2000, 6:175-190
  • 10Lou Y, Ni W M. Diffusion, self-diffusion and cross-diffusion. J Differ Equations, 1996, 131:79-131

共引文献4

同被引文献1

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部