摘要
核函数的选取是SVM分类器选取的核心问题.核函数的自动选取既可以提高分类器的性能,又可以减少人为的干预.因此如何自动选取核函数已经成为SVM的热点问题,但是这个问题并没有获得很好的解决.近年来对核函数参数的自动选取的研究,特别是对基于梯度的优化算法的研究取得了一定的进展.提出了一种基于梯度的核函数选取的通用算法,并进行了实验.
It's well-known that the major task of the SVM lies in the selection of its kernel. Choosing the kernel parameters automatically could improve the performance of SVM while reduce the intervention of human user.However,the best way to determine the parameters of the kernel is still an open question.Recent advances in kernel-based learning algorithm have brought SVM closer to the goal of autonomy.This paper presents a uniform algorithm based on gradient for choosing the kernel parameters of the SVM.Experimental results show the feasibility of our approach.
出处
《数学的实践与认识》
CSCD
北大核心
2011年第1期7-13,共7页
Mathematics in Practice and Theory