期刊文献+

半定规划的一种修正原对偶内点算法研究

The Research of a Modified Primal-Dual Interior-Point Algorithm For SDP
原文传递
导出
摘要 提出了半定规划(SDP)的一种修正的原对偶内点算法,对初始点的选取进行了改进,提高了算法的计算效率,并证明了新算法的迭代复杂性是O(n). A modified primal-dual interior point algorithm is proposed for semidefinite programming. It can give a wider neighborhood for initial point and improve the efficiency of the algorithm.It is proved that the iterative complexity of the algorithm is O(n).
出处 《数学的实践与认识》 CSCD 北大核心 2011年第1期178-183,共6页 Mathematics in Practice and Theory
基金 陕西省自然科学基金(2007A16)
关键词 半定规划 原对偶内点算法 FROBENIUS范数 谱范数 semidefinite programming primal-dual interior point algorithm Frobenius-norm spectral norm
  • 相关文献

参考文献13

  • 1Karmarkar N K. A new polynomial time algorithm or linear programming[J]. Combinatorica, 1984, 4(4): 373-395.
  • 2Nesterov Y E, Nemirovsky A S. Interior point methods in convex programming[J]. Theory and Applications, Society for Industrial and Applied Mathematics, Philadelphia, PA, 1994.
  • 3Nesterov Y E, Nemirovsky A S. A general approach to the design of optimal methods for smooth convex functions minimization[J]. Ekonomikai Matem Metody, 1988, 24: 509-517.
  • 4Mizuno S, Todd M J, Ye Y. On adaptive step primal-dual interior-point algorithms for linear Programming[J]. Mathematics of Operarions Research, 1993, 18(4): 964-981.
  • 5Ye Y. Interior point Algorithm: Theory and Analysis[M]. New York: John Wiley & Sons, Inc, 1997.
  • 6Alizadeh F. Interior point method in semidefinite programming with applications to combinatorical optimization[J]. SIAM J Optimization, 1995, 5: 13-51.
  • 7Alizadeh F, Hadberly J P, Overton M. Primal-dual Interior-point Methods for Semidefinite Programming, Technical Report 659[M]. Computer Science Department, Courant Institute of Mathematical Sciences, New York University, New York, NY, 1994.
  • 8Potra F A, Sheng R. A superlinearly convergent Primal-dual infeasible interior-point algorithm for semidefinite programming[J]. SIAM J Optimization, 1998, 8(4): 1007-1028.
  • 9Jarre F..An interior-point Method for minimizing the maximum eigenvalue of a linear combination of matrices[J]. SIAM J Control and Optimization, 1993, 31: 1360-1377.
  • 10Nesterov Y E, Todd M J. Primal-dual interior point methods for self-scaled cones [J]. SIAM J Optimization, 1998, 8(2): 324-364.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部