期刊文献+

对于部分线性模型的乘积调整半参估计 被引量:1

A Semiparametric Estimation with Multiplicative Adjustment for Partially Linear Models
原文传递
导出
摘要 本文使用一种带有乘积调整的半参方法估计部分线性模型的非参数部分并给出所得估计的渐近性质。与传统的非参估计方法相比,我们所使用的半参数方法能够有效的降低所得估计的偏差,而方差不受影响。因此在积分均方误差(MISE)的意义下,该半参数方法要优于传统的估计方法。数值模拟也表明了这一点. In this paper, we utilize a semiparametric approach with multiplicative adjustment to estimate the nonparametric component of partially linear models. The asymptotic theory and simulation study are discussed. Theoretical results and numerical comparison show that, the semiparametric estimator has the very same large sample variance as the classical estimator, while there is substantial room for reducing the bias. So in the sense of mean integrated squared error (MISE), the semiparametric method is superior to the classical estimator.
作者 王凯平
出处 《数理统计与管理》 CSSCI 北大核心 2011年第1期70-75,共6页 Journal of Applied Statistics and Management
基金 山东省软科学研究计划项目(批准号:2009RKA036) 山东大学自主创新基金资助(项目编号:2010TS073)
关键词 部分线性模型 非参方法 半参方法 partially linear models, nonparametric method, semiparametric method
  • 相关文献

参考文献9

  • 1Engle R F, Granger C W J, Rice J and Weiss A. Semiparametric estimates of the relation between weather and electricity sales [J]. Journal of the American Statistical Association, 1986, 81: 310-320.
  • 2Schmalensee R and Stoker T M. Household gasoline demand in the United States [J]. Econometrica, 1999, 67:645- 662.
  • 3Hardle W, Liang H, Gao J. Partially Linear Models [M]. Heidelberg: Physica-Verlag, 2000.
  • 4Hjort N L and Glad I K. Nonparametric density estimation with a parametric start [J]. Annals of Statistics, 1995, 23: 882-904.
  • 5Naito K. Semiparametric density estimation by local L2-fitting [J]. Annals of Statistics, 2004, 32: 1162-1191.
  • 6Glad I K. Parametrically guided non-parametric regression [J]. Scandinavian Journal of Statistics, 1998, 25: 649-668.
  • 7Wang K P and Lin L. Semi-parametric density estimation for time-series with multiplicative adjust- ment [J]. Communications in Statistics-Theory and Methods, 2008, 37:1274 -1283.
  • 8Fan J and Gijbels I. Local Polynomial Modelling and Its Applications [M]. London: Chapman and Hall, 1996.
  • 9Hamilton S A and Truong Y K. Local linear estimation in partly linear models with smoothing splines [J]. Journal of Multivariate Analysis, 1997, 60: 1-19.

同被引文献18

  • 1高集体,陈希孺,赵林城.部分线性模型中估计的渐近正态性[J].数学学报(中文版),1994,37(2):256-268. 被引量:41
  • 2高集体,洪圣岩,梁华.部分线性模型中估计的收敛速度[J].数学学报(中文版),1995,38(5):658-669. 被引量:41
  • 3薛留根,朱力行.纵向数据下部分线性模型的经验似然推断[J].中国科学(A辑),2007,37(1):31-44. 被引量:11
  • 4H~rdle W, Liang H, and Gao J T. Partially Linear Models [M]. Heidellberg: Physica-Verlag, 2000.
  • 5Li G R, Xue L G. Empirical likelihood confidence region of the parameter in the partially linear errors-in-variables model [J]. Commun. Statist. Theor. Meth., 2008, 37(10): 1552-1564.
  • 6Engle R F, Granger C W J, Rice J, and Weiss A. Semiparametric estimates of the relation between weather and electricity scales [J]. J. Amer. Statist. Assoc. 1986, 81: 310-320.
  • 7Liang H. Estimation in partially linear models and numerical comparisons [J]. Computational Statis- tics & Data Analysis, 2006, 50: 675-687.
  • 8Fan J Q, Zhang W Y. Simultaneous confidence bands and hypothesis testing in varying-coefficient models [J]. Scand. J. Statist., 2000, 27(4): 715-731.
  • 9Liu W, Hayter A J, Piegorsch W W, and Ah-Kine P. Comparison of hyperbolic and constant width simultaneous confidence bands in multiple linear regression under MVCS criterion [J]. J. Multivariate Anal., 2009, 100: 1432-1439.
  • 10Sampsona A R, Singh H, Whitaker L. Simultaneous confidence bands for isotonic functions [J]. J. Statist. Plan. and Infer., 2009, 139: 828-842.

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部