期刊文献+

关联规则挖掘在航空安全报告分析中的应用 被引量:2

Application of association rules mining in aviation safety reports analysis
下载PDF
导出
摘要 针对航空安全自愿报告的特点,将关联规则挖掘算法中改进的Apriori算法应用于航空安全报告。提出用规则前后件约束的方法挖掘异常事件和事件原因之间的关联规则,不但限制冗余规则的生成,还进一步提高了挖掘的效率和精度。依据生成的频繁项集对引起航空事件的主要原因进行分析,总结了一些对提高民航安全水平有价值的决策信息。 According to the characteristics of aviation safety reports,association rules mining algorithm is applied to analyzing aviation safety reports,and association rules between the anomalies and causes of aviation incidents are analyzed using constraint-method of before and after pieces of rules.The algorithm not only limite the generation of redundant rules,but also further enhance the efficiency and accuracy of the excavation,and the causes of aviation incidents depending on found frequent item sets are analyzed.Finally,some valuable results are gained through above-mentioned analysis.
出处 《计算机工程与设计》 CSCD 北大核心 2011年第1期218-220,346,共4页 Computer Engineering and Design
基金 国家自然科学基金项目(60776806 60672174) 中国民航大学博士启动基金项目(06qd08s)
关键词 航空安全报告 APRIORI 关联规则 频繁项集 规则约束 aviation safety reports Apriori association rule frequent item set rule constraint
  • 相关文献

参考文献8

  • 1NAZERI Z.Application of aviation safety data mining and workbench at American airlines [OL]. Global Aviation Information Network (GAIN), 2003. http://www.mitre.org/work/tech_apers/tech_apers_03/nazeri_data/nazeri_data.pdf,2009.
  • 2NAZERI Z.Data mining of air traffic control operational errors [D]. Fairfox, VA: Georgia Mason University, 4400 University Drive, 22030,2006.
  • 3MAJUMDAR A, OCHIENG W. Trend analysis of controller- caused airspace incidents in new zealand[Z].The Journal of the Transportation Research Record,NO. 1888, 2004:22-33.
  • 4NAZERI Z.Exploiting available domain knowledge to improve mining aviation safety and network security data[C]. Pisa, Italy: The 15th European Conference on Machine Learning (ECML)and the 8th European Conference on Principles and Practice of Knowledge Discovery in Databases (PKDD),2004.
  • 5SRIVASTAVA A N, ZANE-ULMAN B. Discovering recurring anomalies in text reports regarding complex space systems[C]. IEEE Aerospace Conference, 2005.
  • 6SRIVASTAVA A N,AKELLA R,KUMARESAN S P, et al.Enabling the discovery of recurring anomalies in aerospace problem reports using high-dimensional clustering techniques[C].IEEE Aerospace Conference, 2006.
  • 7ZHANG D,HAN J W.Topic cube: topic modeling for OLAP on multidimensional text databases [C]. Spark, NV: Proc SIAM Int Conf on Data Mining(SDM'09), 2009.
  • 8FAA: ASRS (Aviation Safety Reports System) Data Base [DB/ OL] .http://akama.arc.nasa.gov/ASRSDBOnline/QueryWizard_ Filter.aspx,2009.

同被引文献34

引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部