期刊文献+

贝叶斯优化算法的选择策略分析 被引量:2

Analysis on selection strategy of Bayesian optimization algorithm
下载PDF
导出
摘要 针对贝叶斯优化算法的选择策略问题,对变量无关,双变量相关,多变量相关等3类典型函数分别用锦标赛选择、截断选择和比例选择以及自适应比例选择进行了实验。建立了相应的贝叶斯网络概率模型,并分析指出锦标赛选择策略能有效保持样本的多样性,并能建立起准确的网络模型。与比例选择策略和截断选择策略相比较,该选择策略更适用于贝叶斯优化算法。 To test selection strategy on Bayesian optimization algorithm,tournament selection,truncation selection,proportional selection and self-adaptive proportional selection are adapted to deal with typical dependency-free function,bivariate dependencies function and multivariate dependencies function,corresponding Bayesian network is set up.Analysis discovers that the diversity of samples is kept and the model is more accurate in tournament selection.Tournament selection is the best selection strategy for Bayesian optimization algorithm,truncation selection and proportional selection are unsuitable for the algorithm.
作者 江敏 陈一民
出处 《计算机工程与设计》 CSCD 北大核心 2011年第1期266-269,共4页 Computer Engineering and Design
关键词 贝叶斯优化算法 锦标赛选择 截断选择 比例选择 自适应比例选择 Bayesian optimization algorithm tournament selection truncation selection proportional selection self-adaptive proportional selection
  • 相关文献

参考文献7

二级参考文献19

  • 1王淑佩,林亚平,易叶青.一种新的基于小生境的自适应遗传算法[J].兰州理工大学学报,2006,32(5):83-87. 被引量:10
  • 2杨平,郑金华.遗传选择算子的比较与研究[J].计算机工程与应用,2007,43(15):59-62. 被引量:46
  • 3Etxeberria R, Larranaga P. Global optimization using Bayesian networks[C]//the 2nd Symposium on Artificial Intelligence, Habana, Cuba, 1999:332-339.
  • 4Pelikan M, Goldberg D E. CantuPaz E. BOA: The Bayesian optimization algorithm[C] // Proceedings of the Genetic and Evolutionary Computation Conference, Orlando, Florida,? USA. 1999:525- 532.
  • 5Muehlenbein H. Mahnig T, Rodriguez A O. Schemata, distributions, and graphical models in evolutionary optimization[J]. Journal of Heuristics, 1999, 28 (5):215-247.
  • 6Holland J H. Adaptation in natural and artificial systems[M]. Ann Arbor, MI: University of Michigan Press, 1975.
  • 7Heckerman D, Geiger D, Chickering D M. Learning Bayesian Networks: The combination of knowledge and statistical data [J]. Machine Learning, 1995, 20(3): 197-243.
  • 8Pelikan M. Bavesian optimization algorithm: from Single Level to Hierarchy[D]. USA, Ann Arbor, MI 48106- 1346, University of Illinois at Urbana-Champaign, 2002.
  • 9Pelikan M, Sastry K. Fitness inheritance in the Bayesian Optimization Algorithm[R]. Urbana Illinois : IlliGAL Report No 2004009 February, 2004.
  • 10JHolland J. Adaptation in natural and artificial systems[M]. Michigan: The University of Michigan Press, 1975.

共引文献30

同被引文献10

引证文献2

二级引证文献16

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部