期刊文献+

基于QPSO组合优化的发酵过程LS-SVM建模 被引量:1

LS-SVM modeling for fermentation process based on QPSO combinatorial optimization
下载PDF
导出
摘要 利用最小二乘支持向量机(LS-SVM)对发酵过程进行建模,辅助变量和模型参数的选择对建模效果有很大影响。因此提出了一种基于量子粒子群算法(QPSO)的组合优化建模方法,构造基于赤池信息量准则(AIC)的适应度函数,利用QPSO同步选择最优的辅助变量组合和参数对,对模型进行自动优选。将该方法用于诺西肽发酵过程的建模,仿真结果表明,通过QPSO组合优化能获得更好的建模效果。 The selection of instrumental variables and parameters has an important impact on least square support vector machine(LSSVM) model performance in fermentation process.A new combinatorial optimization method based on quantum-behaved particle swarm optimization(QPSO) is proposed to solve this problem.A fitness function based on Akaike information criterion(AIC) is constructed, and thenQPSO is applied to select the optimal combination of input variables and couple of parameters simultaneously.The result ofmodeling simulation of Nosiheptide fermentation process shows that this combinatorial optimization method can get better model performance.
出处 《计算机工程与设计》 CSCD 北大核心 2011年第1期285-288,共4页 Computer Engineering and Design
基金 河南省创新人才杰出青年计划基金项目(084100410009)
关键词 最小二乘支持向量机(LS-SVM) 建模 辅助变量 量子粒子群算法(QPSO) 组合优化 赤池信息量准则(AIC) least square support vector machine(LS-SVM) modeling instrumental variable quantum-behaved particle swarm optimization(QPSO) combinatorial optimization Akaike information criterion(AIC)
  • 相关文献

参考文献10

二级参考文献59

共引文献126

同被引文献13

  • 1凤权,汤斌,陈中碧.多粘芽孢杆菌发酵培养基优化及发酵特性研究[J].食品与发酵工业,2007,33(7):46-48. 被引量:8
  • 2Niu, D P, Wang F L, Zhang L L, et al. Neural network ensemble modeling for nosiheptide fermentation process based on partial least squares regression[ J]. Chemometrics and Intelligent Laboratory Systems, 2011, 105(1) : 125 -130.
  • 3Ge H W, Qian F, Liang Y C, et al. Identification and control of nonlinear systems by a dissimilation particle swarm optimization - based Elman neural network [ J ]. Nonlinear Analysis : Real World Applications, 2008, 9(4) : 1345 - 1360.
  • 4He Q, Wang L. An effective co-evolutionary particle swarm optimization for constrained engineering design problems [ J ]. Engineering Applications of Artificial Intelligence, 2007, 20 : 89 - 99.
  • 5Becker T, Enders T, Delgado A. Dynamic neural networks as a tool for the online optimization of industrial fermentation[ J ]. Bioprocess and Biosystems Engineering, 2002, 24 (6) : 51 - 56.
  • 6Kurt A, Oktay A B. Forecasting air pollutant indicator levels with geographic models 3 days in advance using neural networks [J].Expert Systems with Applications, 2010, 37 (12) : 7986 - 7992.
  • 7Brunelli U, Piazza V, Pignato L, et al. Three hours ahead prevision of SO2 pollutant concentration using an Elman neural based forecaster[ J ]. Building and Environment, 2008, 43 (3) : 304 - 314.
  • 8Kelo S, Dudul S. A wavelet Elman neural network for short - term electrical load prediction under the influence of temperature [ J ]. International Journal of Electrical Power & Energy Systems, 2012, 43 (1) : 1063 - 1071.
  • 9Wu Q, Law R. An intelligent forecasting model based on robust wavelet v -support vector machine[J]. Expert Systems with Applications, 2011, 38(5): 4851 -4859.
  • 10刘尧猛,马永军,杨美艳.改进型Elman神经网络发酵过程建模研究[J].计算机工程与应用,2009,45(32):240-243. 被引量:2

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部