期刊文献+

基于混合差分的车辆检测方法 被引量:4

Vehicle detection algorithm based on hybrid difference
下载PDF
导出
摘要 以实时获取的视频图像为基础,针对ITS领域的关键技术,对高速公路事件检测系统的多个方法进行了改进。在彩色图像模型下提出一种改进的基于混合差分的车辆检测方法,使检测更快速,效果更好。针对检测结果的后期处理,提出了一种实时分割与实时合并移动目标的算法。实时分割主要采用一种基于阴影消除的方法,通过模板匹配,从而达到分割重叠车辆的目的。实时合并则引进一种兴趣度函数来填补移动目标的内部空洞,同时通过测定六边形之间的距离使断裂部分进行合并。实验结果表明,提出的算法简单、易实现、具有高实时性,车辆检测率超过96%。 According to the key techniques of ITS filed,several improved techniques in free way incident detection system are studied and analyzed on the basis of real-time video images.A hybrid difference strategy based on difference model of colored images is introduced to attain higher detecting quality than other methods.As regard to post-treatment of the test results,an algorithm for real-time segmentation and integration of the moving target is presented.The real-time segmentation mainly adopts an improved algorithm based on the elimination of the shadow,to divide the moving target and by matching the template,separate the overlapping vehicles.In the time of integration,this essay brings forth a type of interest function to make a real-time filling of the internal hollowness of the moving target,and have a real-time merger by making use of the distances between the hexagon.Experimental results shown that the various proposed algorithm is characterized by simplicity,easy-to-use and high real-time.The vehicle detection rate is over 96%.
作者 朱娟 陈杰
出处 《计算机工程与设计》 CSCD 北大核心 2011年第1期332-335,共4页 Computer Engineering and Design
关键词 车辆检测 混合差分 实时分割 车辆跟踪 事件检测 vehicle detection hybrid difference real-time segmentation vehicle tracking incident detection
  • 相关文献

参考文献8

二级参考文献73

  • 1Collins R, Lipton A,Kanade T,et al. A System for Video Surveillance and Monitoring.Tech. Report CM U-RI-TR-00-12,Robotics Institute,Carnegie Mellon University,2000-05.
  • 2Koller D, Daniilidis K,Nagel H.Model-bascd Object Tracking in Monocular Image Sequences of Road traffic Scenes.International Journal of Computer Vision, 1993,10(3).
  • 3Wren C R,Azarbayejani A,Darrell T.Plinder:Real_time Tracking of the Human Body.IEEE Transactions on Pattern Analysis and Machine Intelligence, 1977-07,7.
  • 4Haritaoglu I,Davis L S,Harwood D.W4 Who? When? Where? What? A Rreal Time System for Detecing and Tracking People.In FGR98,1998.
  • 5Mclvor M.Background Subtraction Techniques.IVCNZ00, Hamilton,New Zealand, 2000-11.
  • 6Toyama K,Krumm J.Brumitt B.et al.Wallowver; Principles and Practice of Background Maintenance.ln International Conference on Computer Vision (1999).
  • 7Marcenaro L.Gera G.Rcgazzoni C.Adaptive Change Dctection APProach for Objcet Detection in Outdoor Scenes Under Variable Speed IIIumination Changes.European Signal Processing Conference Eusipco 2000,Tamperc.Finland.
  • 8Cucchiara R,Grana C.Piceardi M.Improving Shadow Suppression in Moving Objcet Detection with HSV Color Information.Proc.of ITSC,2001.
  • 9Y. Raja, S. McKenna, S. Gong. Tracking and segmenting people in varying lighting conditions using colour. In: Int'l Conf.Face and Gesture Recognition. Nara, Japan: IEEE Computer Society Press, 1998. 228~233.
  • 10S.J. McKenna, Y. Raja, S. G. Gong. Tracking colour objects using adaptive mixture models. Image and Vision Computing,1999, 17(2): 225~231.

共引文献144

同被引文献55

引证文献4

二级引证文献25

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部