期刊文献+

3-正则Halin图的边可区别数

The edge distinguishing number of the 3-regular Halin graphs
下载PDF
导出
摘要 根据3-正则Halin图的Hamilton性,结合其边的相邻关系,通过适当地选取边进行着色后证明了4和6阶以上3-正则Halin图G的边可区别数分别为3和2. According to the Hamilton property of the 3-regular graph,and combining with the adjacent relations of the edges,proven that the edge distinguishing number of 3-regular graphG is respectively 3 and 2 on 4 and above 6 vertices by selecting edges properly and coloring.
作者 高志军 李懿
出处 《高师理科学刊》 2011年第1期43-45,共3页 Journal of Science of Teachers'College and University
基金 黑龙江科技学院科研基金资助项目(06-116)
关键词 图着色 边可区别数 可区别数 HALIN图 graph coloring edge distinguishing number distinguishing number Halin graph
  • 相关文献

参考文献9

  • 1Albertson M, Collins K. Symmetry breaking in graphs[J]. Electron J Combin, 1996 ( 3 ): 1-17.
  • 2Bogstad B, Cowen L. The distinguishing number of the hypercube[J]. Discrete Mathematics, 2004, 283:29-35.
  • 3Gao Z, Li Y. The edge distinguishing number of the Halin graphs[J]. Advances in Information and Systems Sciences, 2009 ( 3 ): 1066-1073.
  • 4高志军,蔡颖,杜杰,温宇鹏.超立方体三次幂的可区别数研究[J].大连海事大学学报,2006,32(2):121-126. 被引量:7
  • 5Russell A, Sundaram R. A note on the asymptotics and computational complexity of graph distinguishability[J]. Elecetron J Combin, 1998 (5): 1-7.
  • 6高志军,李懿,张绍兵.超立方体的边可区别数[J].黑龙江科技学院学报,2007,17(5):381-383. 被引量:3
  • 7刘景发,李鸿祥.Δ(G)=3时的Halin图的边面全色数[J].上海铁道大学学报,1999,20(12):64-67. 被引量:6
  • 8Bela B.Modem Graph theory[M].New York:Springer,1998.
  • 9哈拉里.图论[M].上海:上海科技技术出版社,1980..

二级参考文献13

  • 1张忠辅,吕新忠,刘明华.最大度△(Hg)≥7及△(Hg)=4、5、6的Halin图的边面全色数[J].兰州铁道学院学报,1993,12(4):90-95. 被引量:4
  • 2高志军,蔡颖,杜杰,温宇鹏.超立方体三次幂的可区别数研究[J].大连海事大学学报,2006,32(2):121-126. 被引量:7
  • 3哈拉里F.图论[M].上海:上海科学技术出版社,1980..
  • 4ALBERTSON M,COLLINS K. Symmetry breaking in graphs[J]. Electron J Combin, 1996(3) : 1-17.
  • 5BOGSTAD B, COWEN L. The distinguishing number of the hypercube[J]. Discrete Mathematics, 2004,283: 29-35.
  • 6CHENG C C T. Three problems in graph labeling[D]. [S. l.] :Johns Hopkins University. 1999:1-165.
  • 7POTANKA K. Groups, graphs and symmetry breaking[ D]. [ S. l. ] : Virginia Polytechnic Institute, 1998:1-63.
  • 8RUSSELL A, SUNDARAM R. A note on the asymptotics and computational complexity of graph distinguishability[J].Electron J Combin, 1998(5) : 1-7.
  • 9ALBERTSON M,COLLINS K,Symmetry breaking in graphs[J].Electron.J.Combin,1996,(3):1-17.
  • 10BOGSTAD B,COWEN L.The distinguishing number of the hypercube[J].Discrete Mathematics,2004,283:29-35.

共引文献18

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部