期刊文献+

低山丘陵区可见光谱的分形特征 被引量:3

Fractal Characteristics of Visible Spectra Across a Hilly Area
下载PDF
导出
摘要 遥感影像记录的反射光谱特征主要来源于异质反射地物的光谱综合作用,了解其空间分布特征有助于影像解译和遥感模型的建立。该文以低山丘陵区10月底多光谱TM遥感影像为研究对象,采用统计学和多重分形相结合的手段分析其空间变异性。结果表明,研究区可见光谱(0.45~0.69μm)亮度值(digitalnumber,DN)空间分布表现出统计意义上的尺度不变性;广义分维函数Dq分析表明TM 2(0.52~0.60μm)DN值空间分布为单一分形,TM 1(0.45~0.52μm)和TM 3(0.63~0.69μm)DN值则表现出统计多重分形特征;多重分形谱参数(αmax-αmin)和[f(αmax)-f(αmin)]分析进一步显示TM 3DN值具有高度异质的空间分布特征和最丰富的信息量,其次是TM 1,而TM 2DN值则具有相对较低的空间异质性和信息量。 The spectral characteristic of remotely sensed image is mainly the results of integrative effects on spectrum from heterogeneous ground reflectors.Investigating its spatial distribution characteristics may be helpful for image interpreting and modeling based on remote sensing technique.In the present study,spatial heterogeneity of remotely sensed multispectral TM image across a hilly area in late October was studied by the combination of statistical method and multifractal analysis.The results showed that distribution of digital number(DN) values of visible spectra(0.45~0.69 μm) had statistical scale-invariance.The generalized fractal dimension function Dq suggested that distribution of TM 2(0.52~0.60 μm) DN values was monofractal type,whereas DN values of TM 1(0.45~0.52 μm) and TM 3(0.63~0.69 μm) had multifractal distribution characteristics.The parameters(αmax-αmin) and [f(αmax)-f(αmin)] of multifractal spectra further indicated that TM 3 DN values had the highest spatial heterogeneity and most abundant information,followed by TM 1,while the extremely narrow spectrum of TM 2 DN values showed its relatively low spatial heterogeneity and information capacity.
出处 《光谱学与光谱分析》 SCIE EI CAS CSCD 北大核心 2011年第2期473-477,共5页 Spectroscopy and Spectral Analysis
基金 国家科技支撑计划项目(2008BADA4B06) 国家自然科学基金项目(40801069) 中国科学院陆地生态过程重点实验室开放课题资助
关键词 亮度值 尺度不变性 多重分形 空间异质性 Digital number Scale-invariance Multifractal analysis Spatial heterogeneity
  • 相关文献

参考文献20

  • 1Nanni M R, Dematte J A M. Soil Sei. Soc. Am. J. , 2006, 70(2): 393.
  • 2Gomez C, Rossel R A V, McBratney A B. Geoderma, 2008, 146(3-4): 403.
  • 3Croft H, Anderson K, Kuhn N J. Eur. J. Soil Sci., 2009, 60(3): 431.
  • 4张法升,曲威,尹光华,刘作新.基于多光谱遥感影像的表层土壤有机质空间格局反演[J].应用生态学报,2010,21(4):883-888. 被引量:48
  • 5Cheng Q M. Comput. Geosci-UK. , 1999, 25(9): 946.
  • 6Mandelbrot B B. The Fractal Geometry of Nature. New York: W. H. Freeman and Company, 1982.
  • 7Renyi A. Probability Theory. Nortn Lolland, Amsterdam. 1970.
  • 8Seuront I., Lagadeuc F S Y, Schertzer D, et al. J. Plankton Res. , 1999, 21(5): 877.
  • 9Bird N, l)iaz M C, Saa A, et al. J. Hydrol. , 2006, 322(1-4): 211.
  • 10Lopes R, Betrouni N. Med Image Anal. , 2009, 13(4): 634.

二级参考文献26

共引文献47

同被引文献74

引证文献3

二级引证文献61

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部