期刊文献+

基于主动遥感的冬小麦群体动态监测 被引量:11

Monitoring Winter Wheat Population Dynamics Using an Active Crop Sensor
下载PDF
导出
摘要 茎蘖数的多少是冬小麦达到最佳产量的关键因素,也是氮肥调控的重要指标。然而为了获得一个代表性的茎蘖数,传统的人工数分蘖的方法费时费力。近年来,随着遥感,特别是主动遥感技术的长足发展,为解决这个问题提供了机遇。文章通过2008年—2009年在河北曲周县中国农业大学试验站的播期、播量和氮水平田间试验,采用主动光谱仪GreenSeeker对冬小麦群体动态进行实时监测,并建立模型来预测小麦茎蘖数。研究表明,以归一化植被指数(NDVI)和简单比值植被指数(RVI)这两个植被指数建立模型都能成功预测小麦茎蘖数,两个植被指数与茎蘖数有着显著的线性关系。NDVI与茎蘖数的决定系数(R2)介于0.25~0.64之间,RVI与茎蘖数的决定系数(R2)介于0.26~0.65之间。验证结果进一步证实了NDVI能更好地在生育前期预测冬小麦的茎蘖数,有高的决定系数(R2,0.54~0.64)、低的均方根误差(RMSE,260~350茎蘖数.m-2)和低的相对误差(RE,16.3%~23.0%)。这些结果表明,主动光谱仪是一个很好的工具可以用来监测冬小麦的群体动态。 Tiller density plays an important role in attaining optimum grain yield and applying topdressing N in winter wheat.However,the traditional approach based on determining tiller density is time-consuming and labor-intensive.As technology advances,remote sensing might provide an opportunity in eliminating this7 problem.In the present paper,an N rate experiment and a variety-seeding and sowing dates experiment were conducted in Quzhou County,Hebei Province in 2008/2009 to develop the models to predict the amount of winter wheat tillers.Positive linear relationships between vegetation indices and tillers were observed across growth stages(R2,0.25~0.64 for NDVI;0.26~0.65 for RVI).The validation results indicated that the prediction using NDVI had the higher coefficient of determination(R2,0.54~0.64),the lower root mean square error(RMSE,260~350 tillers m-2) and relative error(RE,16.3%~23.0%) at early growth stages of winter wheat.We conclude that active GreenSeeker sensor is a promising tool for timely monitoring of winter wheat tiller density.
出处 《光谱学与光谱分析》 SCIE EI CAS CSCD 北大核心 2011年第2期535-538,共4页 Spectroscopy and Spectral Analysis
基金 国家"十一五"科技支撑计划项目(2006BAD02A15)资助
关键词 冬小麦 植被指数 茎蘖数 Winter wheat Vegetation index Tillers numbers
  • 相关文献

参考文献16

二级参考文献45

共引文献133

同被引文献185

引证文献11

二级引证文献94

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部