期刊文献+

基于帧差法的矿用胶带机运动检测 被引量:2

Dynamic Detection of Mine Belt Conveyor Base on Frame-Difference Method
下载PDF
导出
摘要 对于矿用胶带机的运动检测,要求计算快速、实时处理。但由于井下环境复杂,可辨信息量少,采集到的视频图像有明显的光照和噪声干扰,在检测时会造成一定的误差。针对上述问题,提出了一种基于帧差法的胶带运动检测方法,在满足检测需求的同时,结合了井下视频图像的特点,对图像进行分割,排除干扰区域,从而可以准确、快速地判断胶带的运动情况。 The dynamic detection of the mine belt conveyor would require a rapid calculation and the real time process. Due to the complicated underground mine environment and the less distinguishable information quantity, the video images collected would have obvious illumination and noise interferences, which could cause certain errors during the detection. According to the above problems, a belt dynamic detection method was provided base on the frame difference method. To meet the detection requirements and in combination with the underground video image features, the images would have a cut process to eliminate the interference sections. Thus the belt movement could be accurately and rapidly judged.
机构地区 中国矿业大学
出处 《煤炭工程》 北大核心 2011年第1期103-105,共3页 Coal Engineering
关键词 胶带机 运动检测 帧差法 区域选择 belt conveyor dynamic detection frame -difference method region selection
  • 相关文献

参考文献5

二级参考文献16

  • 1余松煜 周源华 等.数字图像处理[M].电子工业出版社,1987..
  • 2[1]Barron J L, Fleet D J, Beauchemin S S. Performance of optical flow techniques[J]. International Journal of Computer Vision, 1994,12(1): 43-47.
  • 3[2]Verri A, Poggio T. Against quantitative optical flow[A]. Proc. of First Conference on Computer Vision[C], London, England,IEEE, 1987.171-180.
  • 4[3]Shahriar Negahdaripour. Revised definition of optical flow: integration of radiometric and geometric cues for dynamic scene analysis[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1998,20(9): 961-979.
  • 5[4]Heiz F, Bouthemy P. Multimodal estimation of discontinous optical flow using markov random fields[J]. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1993, 15(12):1217-1232.
  • 6[5]Beauchemin S S, Barron J L. The computation of optical flow[J]. ACM Comp. Surveys, 1995,27(3): 433-467.
  • 7[6]Lucas B, Kanade T. An iterative image registration technique with an application to stereo vision[A]. Proc. DARPA IU Workshop[C],Menlo Park,California, 1981,121-130.
  • 8[7]Horn B K P, Schunck H G. Determining optical flow[J]. Artificial Intelligence, 1981, 17(1-3): 185-204.
  • 9[8]ONG E P, Spann M. Robust optical flow computation based on least-median-of-square regression[J]. International Journal of Computer Vision, 1999,31(1):51-82.
  • 10COLLINS R T,LIPTON A J,KANADE T.Introduction to the special section on video surveillance[J].IEEE Transactions on Pattern Analysis and Machine Intelligence,2000,22(8):745-746.

共引文献146

同被引文献10

  • 1胡宏宇,李志慧,曲昭伟,王殿海.基于上下文的交通事件表达与识别[J].吉林大学学报(工学版),2009,39(S2):158-162. 被引量:4
  • 2Nishu S. Motion detection based on frame difference meth- od~ J ]. International Journal of hfformation & Computation Technology ,2014,4( 15 ) : 1559 - 1565.
  • 3Olivier B, Marc V D. Vibe: a universal background subtrac- tion algorithm for video sequences. IEEE Transactions on Image Processing, 2011,20 (6) : 1709 - 1724.
  • 4Sheng C L, Guo Y Z, Viii K, et al. Modeling pixel process with scale invariant local patterns for background subtrac- tion in complex scenes[J]. IEEE Conference on Computer Vision and Pattern Recognition (CVPR), 2010:1301 - 1306.
  • 5Shahriar N. Revised definition of optical flow :integration of radiometric and geometric cues for dynamic scene analysis [J]. IEEE Transactions on pattern analysis and machine intelligence, 1998, 20 (9) : 961 - 979.
  • 6Zzhang K H, Zhang L, Liu Q, [J]. Fast tracking via dense spatio - temporal context learning [ J ]. In ECCV, 2014 : 127 - 141.
  • 7宁瑞芳,欧阳宁,莫建文.基于光流法的聚众事件检测[J].计算机工程与应用,2012,48(3):198-201. 被引量:10
  • 8侯建波,顾宏斌,孙瑾.基于形状上下文与粒子滤波的机翼跟踪[J].计算机工程与应用,2012,48(32):191-195. 被引量:1
  • 9於正强,潘赟,宦若虹.一种结合帧差法和混合高斯的运动检测算法[J].计算机应用与软件,2015,32(4):129-132. 被引量:25
  • 10程德强,郭政,刘洁,钱建生,张媛媛,张佳琳.一种基于改进光流法的电子稳像算法[J].煤炭学报,2015,40(3):707-712. 被引量:13

引证文献2

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部