期刊文献+

基于引力场模型的图像匹配方法 被引量:2

Method for Image Matching Based on Gravitation Field Model
下载PDF
导出
摘要 针对无人机视觉辅助导航的自主着陆技术研究,提出了引力场模型的图像匹配新方法,直接建立失配代价势函数的梯度场。只要进入正确匹配位置的收敛域,就可以按照最优估计理论找到最速下降路径,从而找到正确匹配位置。选择不同的引力场模型,可以得到不同的收敛域。低阶模型收敛域较大,但匹配精度较低;高阶模型匹配精度较高,但收敛域较小。当收敛域较大时,可以采用较大的搜索步长寻找收敛域,提高图像匹配搜索阶段的效率。零阶模型与采用欧氏距离作为基本测度的Hausdorff距离方法一致,但其引力场不便于计算;非零阶模型由质点的引力场线性叠加就可以得到质点系的引力场。仿真实验表明搜索阶段采用二阶模型效果最好,达到匹配图像的精度要求。 This paper introduces a new method for image matching based on gravitation field model. We can build gradient field of the mismatch cost function directly. As long as in convergence domain of the correct matching position, we find the steepest descent path according to the optimum estimation theory and then find the correct matching position. With the different gravitational field model, we get different convergence domain. The lower order model gets the larger convergence domain but the lower matching precision. The higher order model gets the higher matching precision but the smaller convergence domain. With the larger convergence domain, we can search more efficiently in image matching using the larger step size. The zero-order model is equivalent to the Hausdorff distance using Euclidean distance as the basic distance measure, but it is difficult to obtain the gravitational field. The nonzero order model gets the gravitational field of particle system easily using the linear superposition of single particle gravitational fields. The second order model is most suitable for searching, which has been evaluated via computer simulations. The form of the second order model is as same as the law of gravitv.
出处 《计算机仿真》 CSCD 北大核心 2011年第1期88-91,共4页 Computer Simulation
关键词 无人机 组合导航 图像匹配 引力场模型 收敛域 UAV Composite navigation Image matching Gravitational field model Convergence domain
  • 相关文献

参考文献7

  • 1F R Schell, E D Dickmanns. Autonomous landing of airplanes by dynamic machine vision [ J]. Machine Vision and Applications, 1994,7(3) :127-134.
  • 2陈磊,陈宗基.基于视觉的无人作战飞机自主着陆导航方案[J].北京航空航天大学学报,2007,33(2):159-163. 被引量:9
  • 3C S Sharp, O Shakernia, S S Sastry. A vision system for landing an unmanned aerial vehicle[ C]. IEEE International Conference on Robotics and Automation. Seoul : Institute of Electrical and Electronics Engineers Inc, 2001. 1720-1727.
  • 4J M Hespanha, etal. Linear parametrically varying system with brief instabilities: an application to vision / inertial navigation [ J ]. IEEE Transactions on Aerospace and Electronic Systems, 2004,40 (3) :889-902.
  • 5安知.基于角点特征的飞行器导航图像匹配算法研究[D].南京大学博士论文,2005,5;17-19.
  • 6谷克鉴.国际经济学对引力模型的开发与应用[J].世界经济,2001,24(2):14-25. 被引量:172
  • 7顾丽敏,吴小俊,王士同,杨静宇.基于万有引力定律的人脸识别方法[J].计算机工程,2008,34(11):181-182. 被引量:3

二级参考文献14

  • 1陈磊,陈宗基.基于视觉的无人作战飞机自主着陆仿真系统研究[J].系统仿真学报,2006,18(7):1815-1819. 被引量:11
  • 2Sharp C S,Shakernia O,Sastry S S.A vision system for landing an unmanned aerial vehicle[C]// IEEE International Conference on Robotics and Automation.Seoul:Institute of Electrical and Electronics Engineers Inc,2001:1720-1727
  • 3Hespanha J M,Yakimenko O A,Kaminer I I,et al.Linear parametrically varying system with brief instabilities:an application to vision/inertial navigation[J].IEEE Transactions on Aerospace and Electronic Systems,2004,40(3):889-902
  • 4Sonka M,Hlavac V,Boyle R.Image processing,analysis,and machine vision[M].2nd ed.[S.l.]:Brooks/Cole Publishing Company,1999
  • 5Smith S M,Brady J M.SUSAN-a new approach to low level image processing[J].International Journal of Computer Vision,1997,23(1):45-78
  • 6Amidi O.An autonomous vision-guided helicopter[D].Pittsburgh:Electrical & Computer Engineering Department,Carnegie Mellon University,1996
  • 7Schell F R,Dickmanns E D.Autonomous landing of airplanes by dynamic machine vision[J].Machine Vision and Applications,1994,7(3):127-134
  • 8Foley D H, Sammon J W. An Optimal Set of Discriminant Vectors[J]. IEEE Trans. on Computers, 1975, 24(3):281-289.
  • 9Duchene J, Leclercq S. An Optimal Transformation for Discriminant and Principal Component Analysis[J]. IEEE Trans. on PAMI, 1988, 10(6): 978-983.
  • 10Hong Ziquan. Algebraic Feature Extraction of Image for Recognition[J]. Pattern Recognition, 1991, 24(3): 211-219.

共引文献181

同被引文献36

引证文献2

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部