期刊文献+

三角阵列的中偏差

Moderate deviations for triangular arrays
下载PDF
导出
摘要 利用截尾方法在一定尾概率条件下得到了三角阵列{Xn,j;1≤j≤kn,n≥1}的中偏差,其中{kn;n≥1}是一列严格单调递增的正整数且对任意的正整数n,{Xn,j;1≤j≤kn}是独立同分布的. Using the method of truncation,we get the moderate deviations for triangular arrays of randomvariables {Xn,j;1≤j≤kn,n≥1} under some conditions of tail probability,where {kn;n≥1} is a sequence ofstrictly increasing positive integers and for any fixed n,{Xn,j;1≤j≤kn} are i.i.d.
作者 高振龙
出处 《中国科学院研究生院学报》 CAS CSCD 北大核心 2011年第1期5-11,共7页 Journal of the Graduate School of the Chinese Academy of Sciences
基金 国家自然科学基金(10871200)资助
关键词 中偏差 大偏差 三角阵列 moderate deviation large deviation triangular array
  • 相关文献

参考文献10

  • 1Acosta A D. Moderate deviations and associated Laplace approximations for sums of independent random vectors[ J]. Trans Amer Math Soc, 1992,329( 1 ) :357-375.
  • 2Arcones M A. Moderate deviations of empirical processes [ J ]. Stochastic Inequalities and Applications,2003,56 : 189-212.
  • 3Eichelsbacher P, Lewe M. Moderate deviations for i. i. d. random variables[ J ]. Probab Statist,2003,7 (1) :209-218.
  • 4Davis J A. Convergence rates for pmbabillties of moderate deviations [ J]. Ann Math Statist, 1968,39 (6) :2016-2028.
  • 5Li D L,Wang X C ,Rao M B. Some results on convergence rates for probabilities of moderate deviations for sums of random variables[ J]. Internat J Math Sci, 1992,15 ( 3 ) :481- 498.
  • 6Merlevede F, Peligrad M. Functional moderate deviations for triangular arrays and applications [ J ]. Alea,2009,5 ( 1 ) : 3-20.
  • 7Frolov A N. One one-sided strong laws for large increments of sums[ J]. Statist Probab Lett, 1998,37 (1) :155-165.
  • 8Frolov A N. On probabilities of moderate deviations of sums of independent random variables[ J]. J Math Sci ,2005, 127 (1) :1787-1796.
  • 9Petrov V V. On probabilities of moderate deviations [ J ]. Zap Nauchn Semin POMI, 1999,260 (1) :214-217.
  • 10Dembo A, Zeitouni O. Large deviations techniques and application [ M ]. 2nd ed. New York : Springer, 1998:44,131.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部