期刊文献+

基于多维时间序列的灰色模糊信用评价研究 被引量:44

Research of multidimensional time series credit evaluation based on gray-fuzz analysis model
下载PDF
导出
摘要 传统信用评价技术多在孤立时间点上对受评目标数据进行评价分析,但受评目标由于某些原因可能产生数据"突变",导致评价结果失真,产生信用风险.针对这一问题,本文提出应用多维时间序列数据对受评样本进行信用评价.该方法首先对多维时间序列数据使用灰色关联分析方法进行分割处理,解决"维数灾难"带来的严重影响,并将得到的灰色关联度值作为信用评判值;再运用模糊聚类方法对信用评判值构成时间序列矩阵进行信用评价分析,得到受评样本的"真实"信用等级.通过实例验证,该方法可以从时间序列的角度观察受评目标信用等级的状态趋势及"波动"情况,解决因为数据"突变"造成的评价结果失真问题,具有良好的评价效果和实用价值. Traditional credit evaluation technique only evaluates and analyzes the objective data at the isolated time points, but the objective may generate data variation due to some reasons. Therefore, this may lead to infidelity of the evaluation results and serious credit risk. Aimed at this problem, the multidimensional time series data is used to credit evaluation in this paper. First, the multidimensional time series data is dealt with separately by grey relational analysis, in order to solve the serious effects caused by dimension disaster. At the same time, the credit evaluation value is obtained. Then the time series matrix is used to fuzzy clustering analysis . The real credit evaluation grade is got. The results of our experiment showed this method can observe the credit grade fluctuation of the credit evaluated in view of the time series. Thus, the infidelity of the evaluation results caused by data variation problem is solved, and the proposed method has accurate evaluation effect and better performance in practical application.
出处 《管理科学学报》 CSSCI 北大核心 2011年第1期28-37,共10页 Journal of Management Sciences in China
基金 国家自然科学基金资助项目(60774068) 973计划课题资助项目(2002CB312201)
关键词 信用评价 多维时间序列 灰色关联分析 模糊聚类分析 credit evaluation multidimensional time series grey relational analysis fuzzy cluster analysis
  • 相关文献

参考文献26

  • 1Beaver W H. Financial ratios as predictors of failure [ J ]. Empirical Research in Accounting: Selected Studies, 1966, 4:71 -111.
  • 2Earky M D. Warning of bank failure: A logit regression approach[J]. Journal of Banking and Finace, 1977, 249- 276.
  • 3Messier W F, Hansen J V. Inducing rules for expert system development an example using default and bankruptcy data[J]. Management Science, 1985, 9 : 253 - 266.
  • 4Desai V S, et al. A comparison of neural networks and linear scoring models in the credit union environment[ J ]. European Journal of Operational Research, 1996, 95 : 24 - 37.
  • 5Hashemi R R, Le Blanc L A, Rucks C T, et al. A hybrid intelligent system for predicting bank holding structure[J]. European Journal of Operational Research, 1998, 109 : 211 - 390.
  • 6Malhotra R, Malhotra D K. Differentiating between good credits and bad credit using neuro-fuzzy systems [ J ]. European Journal of Operational Research , 2002, 136:190-211.
  • 7郝丽萍,胡欣悦,李丽.商业银行信贷风险分析的人工神经网络模型研究[J].系统工程理论与实践,2001,21(5):62-69. 被引量:41
  • 8杨保安,季海.基于人工神经网络的商业银行贷款风险预警研究[J].系统工程理论与实践,2001,21(5):70-74. 被引量:66
  • 9庞素琳,王燕鸣,罗育中.多层感知器信用评模型及预警研究[J].数学的实践与认识,2003,33(9):55-62. 被引量:18
  • 10李晓峰,徐玖平.企业财务危机预警Rough-ANN模型的建立及其应用[J].系统工程理论与实践,2004,24(10):8-14. 被引量:41

二级参考文献134

共引文献566

同被引文献502

引证文献44

二级引证文献270

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部