期刊文献+

电场增强镍薄膜的氢气吸附性能研究

Qualitative examination of electric field enhanced hydrogen adsorption on nickel screens
原文传递
导出
摘要 用自制的气体吸附测试装置进行了在电场作用下镍薄膜吸附氮气和氢气的实验.氮气吸附实验结果表明,充电吸附和放电解吸过程中的电信号可准确表征气体的吸附情况.氢气吸附实验结果表明,电场可以有效提高镍电极对氢气分子的吸附作用,电场强度越大,氢气吸附量越大.在电场强度不变时,提高氢气压力会对氢气吸附量带来较弱的提高.在电场作用下,氢气分子会被极化,从而使氢气分子更容易被吸附,并且有助于形成氢团簇. The adsorption behaviors of nitrogen and hydrogen towards nickel screens under various electric fields were studied. A self-made instrument with high voltage supply was used for gas adsorption tests. Signals detected from gas adsorption tests indicate the adsorb behavior during adsorption and desorption processes. Distinctive hydrogen sorption enhancement is obtained by applying an elec- tric field on the samples. The higher the applied electric field strength is, the higher the hydrogen adsorption capacity is achieved in the tests. The amounts of adsorption capacity increased with increasing gas pressure are not obviously when the applied electric field is consistent. This enhancement is ascribed to stronger interactions between hydrogen and the sorbent under electric fields. A stronger adsorption force is generated by the polarization of hydrogen molecules ; furthermore the charged species have capabilities to cluster hydrogen molecules.
出处 《北京科技大学学报》 EI CAS CSCD 北大核心 2011年第1期105-109,共5页 Journal of University of Science and Technology Beijing
关键词 镍电极 吸附作用 氢气 氮气 电场 nickel electrodes sorption hydrogen nitrogen electric fields
  • 相关文献

参考文献15

  • 1Thomas K M. Hydrogen adsorption and storage on porous materials. Catal Today, 2007, 120(3/4) : 389.
  • 2Yang Z, Xia Y, Mokaya R. Enhanced hydrogen storage capacity of high surface area zeolite-like carbon materials. J Am Chem Soc, 2007,129(6) : 1673.
  • 3Panella B, Hirscher M, Ludescher B. Low-temperature thermaldesorption mass spectroscopy applied to investigate the hydrogen adsorption on porous materials. Microporous Mesoporous Mater, 2007, 103 (1 -3) : 230.
  • 4Reilly J J, Wiswall R H. Formation and properties of iron titanium hydride. Inorganic Chem, 1974, 13(1):218.
  • 5Yildirim T, Hartrnan M R. Direct observation of hydrogen adsorption sites and nanocage formation in metal-organic frameworks. Phys Rev Lett, 2005, 95 : article No. 215504-1.
  • 6Ma R, Bando Y, Zhu H,et al. Hydrogen uptake in boron nitride nanotubes at room temperature. J Am Chem Soc, 2002, 124 (26) : 7672.
  • 7Yang R T, Wang Y. Catalyzed hydrogen spillover for hydrogen storage. J Am Chem Soc, 2009, 131 (12) : 4224.
  • 8Hwang J Y, Shi S Z, Li B W, et al. Storing hydrogen with perhydrides//Advanced Materials for Energy Conversion Ⅲ. San Antonio, 2006:101.
  • 9Liu W, Zhao Y H, Nguyen J, et al. Electric field induced reversible switch in hydrogen storage based on single-layer and bilayer graphenes. Carbon,2009, 47 ( 15 ) : 3452.
  • 10Gagliardi L, Pyykko P. How many hydrogen atoms can be bound to a metal? Predicted MH12 species. J Am Chem Soc, 2004, 126 (46) : 15014.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部