摘要
提出了一种基于均值属性测度聚类分析的推土机柴油发动机故障诊断模型。模型以训练样本中各分类样本平均值表示其分类中心,建立各判别因子的未确知测度函数,然后计算单指标未确知测度和样本的均值属性测度,以样本均值属性测度进行等级判别;模型回判的正确率为100%。研究表明,该方法是种用于推土机发动机工作状态分类和故障诊断识别的有效方法。
A model for fault diagnosis of diesel engine of bulldozer is put forward based on cluster analysis of mean attribute measurement. The average of classification indicates the classification center of training samples, and the undetermined measurement functions of discrimination factors of these training samples are rigorously established to calculate the attribute measurements of means of single index and samples. Finally the mean attribute measurement of samples is applied to classify the bulldozer conditions. According to back-discrimination method, the correctness rate is 100%. The study shows this method is effective in working condition classification and fault diagnosis of engine on bulldozer.
出处
《筑路机械与施工机械化》
北大核心
2011年第1期85-88,共4页
Road Machinery & Construction Mechanization
基金
湖南省自然科学基金资助项目(07JJ6080)
关键词
推土机
故障诊断
均值属性测度
聚类分析
bulldozer
fault diagnosis
mean attribute measurement
cluster analysis