期刊文献+

Schur型基的一般构造算法

General constructive algorithm of base of Schur type
下载PDF
导出
摘要 本文研究了具有零点(1,1,…,1)的实对称型形成的子空间,可用平方型表示的子空间,以及可用Schur型表示的子空间的相互关系.证明了这三个子空间是同一个子空间。 This paper studies the relationships of three subspaces: the subspace formed by real symmetric polynomial vanishing at(1,1,...,1), the subspace shown by quadratic form, and the subspace presented by Schur type. These three subspaces are proved to be the same one.
作者 徐嘉 李佳琦
出处 《西南民族大学学报(自然科学版)》 CAS 2011年第1期13-18,共6页 Journal of Southwest Minzu University(Natural Science Edition)
基金 国家自然科学基金项目资助(10901116 11001228) 西南民族大学中央高校基本科研业务费专项资金资助(09NZYZJ07) 西南民族大学人才引进项目资助(2009RC004)
关键词 实对称型 Schur子空间 Schur型基 real symmetric form Schur subspace base of Schur type
  • 相关文献

参考文献16

  • 1HUANG F J, CHEN S L. Schur partition for symmetric ternary forms and readable proof to inequalities[C]. Proceedings of the 2005 International Symposium on Symbolic and Algebraic Computation, ACM press, 2005:185-192.
  • 2陈胜利,黄方剑.三元对称形式的Schur分拆与不等式的可读证明[J].数学学报(中文版),2006,49(3):491-502. 被引量:28
  • 3HARDY H G, LITTLEWOOD J E, POLYA. Inequaliites [M]. 5th ed. London: Cambridge University Press, 1952.
  • 4MITRINOVIE D S, VASIE P M. Analytic Inequalities[M]. New York(Berlin, Heidelberg): Springer-Verlag, 1970: 15-20.
  • 5陈胜利,姚勇.实对称型上的Schur子空间及应用[J].数学学报(中文版),2007,50(6):1331-1348. 被引量:9
  • 6陈胜利,姚勇,徐嘉.代数不等式的分拆降维方法与机器证明[J].系统科学与数学,2009,29(1):26-34. 被引量:4
  • 7CHOI M D, LAM T Y, REZNICK B. Even Symmetric Sextics[J]. Math Z,1987, 195(4): 559-580.
  • 8CHOI M D, LAM T Y. Extremal positive semidefinite forms[J]. Math Ann, 1977, 231 ( 1 ): 1-18.
  • 9COX D, LITTLE J, O'SHEA D. Ideals, Varieties, and Algorithms[M]. New York (Berlin, Heidelberg): Spring-Verlag, 1996.
  • 10HARRIS W R. Real Even Symmetric Ternary Forms[J]. Journal of Algebra, 1999, 222(1 ): 204-245.

二级参考文献13

  • 1杨路,侯晓荣,夏壁灿.A complete algorithm for automated discovering of a class of inequality-type theorems[J].Science in China(Series F),2001,44(1):33-49. 被引量:24
  • 2陈胜利,黄方剑.三元对称形式的Schur分拆与不等式的可读证明[J].数学学报(中文版),2006,49(3):491-502. 被引量:28
  • 3Atin E. Uber die darstellung definiter funktionen in quadrate. Abh Math Sem Hamburg, 1927, 5: 100-115.
  • 4Choi M D, Lam T Y, Reznick B. Even symmetric sextics. Mathematische Zeitschrift, 1987, 195: 559-580.
  • 5Reznick B. Some concrete aspects of Hilbert's 17th problem. Contemp. Math., 2000, 253: 251-272.
  • 6Collins C E. Quantifier elimination for real closed fields by cylindrical algebraic decomposition. Automata Theory and Formal Languages Brakhage, Lecture Notes in Computer Science, Berlin Heidelberg: Springer, 1975, 33: 134-165.
  • 7Yang L, Zhang J. A practical program of automated proving for a class of geometric inequalities, Automated Deduction in Geometry. Lecture Notes in Artificial Intelligence, Berlin, Heidelberg, New York, Springer-Verlag, 2001: 41-57.
  • 8Yang L. Solving harder problems with lesser mathematics. Proceedings of the 10th Asian Technology Conference in Mathematics, South Korea, ATCM Inc, 2005:37- 46.
  • 9Huang F J, Chen S L. Schur partition for symmetric ternary forms and readable proof to inequalites. Proceedings of the 2005 International Symposium on Symbolic and Algebraic Computation. Beijing, ACM press 2005, 185-192.
  • 10陈胜利,姚勇.实对称型上的Schur子空间及应用[J].数学学报(中文版),2007,50(6):1331-1348. 被引量:9

共引文献62

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部