期刊文献+

故障二维环面网络的点二元泛圈性

Vertex bipancyclity of the Torus with faulty elements
下载PDF
导出
摘要 二维环面是一类重要的互联网络,被广泛应用到大型并行分布式系统的网络拓扑中.近年来,人们开始对具有故障元的二维环面进行研究.圈嵌入问题是研究互联网络并行计算中最重要问题之一,本文研究了带有故障元的二维环面以及其子网络的圈嵌入问题并得到如下结果.在具有至多一个故障点或一条故障边的二维环面Torus(m,n)以及子网络Row-Torus(m,n)中(m,n≥3),每个顶点在长从4到mn的无故障偶圈中。 Recently, two-dimensional Torus has been drawing considerable attention as topologies for parallel and distributed multiprocessor interconnection networks. This paper studies the problem of embedding cycles in the two-dimensional Torus with faulty elements and gets the following result. Given two integers m, n 〉 3, for any healthy vertex of the Torus (m, n) with at most one faulty vertex or one faulty edge, there is a cycle of every even length from 4 to mn containing this vertex.
作者 王世杰
出处 《西南民族大学学报(自然科学版)》 CAS 2011年第1期48-51,共4页 Journal of Southwest Minzu University(Natural Science Edition)
关键词 互联网络 二维环面 容错性 点二元泛圈性 interconnection network two-dimensional Torus vertex bipancyclity
  • 相关文献

参考文献10

  • 1KIM HEE-CHUL, PARK JUNG-HEUM. Fault hamiltonicity of two-dimensional torus networks[C]// Proc. of workshop on algorithms and computation WAAC'OO, Tokyo, 2000: 110-117.
  • 2KIM JIN S, MAENG SEUNG RYOUL, et al. Embedding of rings in 2-D meshes and tori with faulty nodes[J]. Journal of Systems Architecture, 1997, 43: 643-654.
  • 3LAKSHMIVARAHAN S, DHALL S K. Ring, torus and hypercube architectures algorithms for parallel computing[J]. Parallel Computing, 1999, 25 : 1877-1906.
  • 4ELLIS JOHN, CHOW STIRLNG, MANKE DENNIS. Many to one embeddings from grids into cyclnders, tori and hypercubes[J]. SIAM J Comput, 2003, 32: 386-407.
  • 5BAE MYUNG M, ALBDAIWI BADER F, et al. Edge-disjoint Hamiltonian cycles in two-dimensional Torus[J]. International Journal of Mathematics and Mathematical Sciences, 2004, 25: 1299-1308.
  • 6WANG JENG-JUNG, HO TUNG-YANG, FERRERO DANIELA, et al. Diameter variability of cycles and tori[J]. Information Sciences, 2008, 178: 2960-2967.
  • 7SHIH Y-K, WUB Y-C, KAO S-S, et al. Vertex-bipancyclicity of the generalized honeycomb tori[J]. Computers and Mathematics with Applications, 2008, 56: 2848-2860.
  • 8DONG Q, YANG X F, ZHAO J. Embedding a fault-free hamiltonian cycle in a class of faulty generalized honeycomb tori[J]. Computers and Electrical Engineering, 2009, 35: 942-950.
  • 9LIESTMAN A L, SHERMERA T C, STACHO L. Edge-disjoint spanners in tori[J]. Discrete Mathematics, 2009, 309: 2239-2249.
  • 10BONDY J A, MURTY U S R. Graph Theory[M]. New York: Springer, 2007.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部