期刊文献+

Pr数对环形浅液池热毛细对流的影响 被引量:2

EFFECT OF PRANDTL NUMBER ON THERMOCAPILLARY CONVECTION IN SHALLOW ANNULAR POOLS
原文传递
导出
摘要 为了解流体普朗特数(Pr)对热毛细对流的影响,通过线性稳定性分析,确定了环形浅液池内硅熔体(Pr=0.011)和几种硅油(Pr数从6.7至57.9)热毛细对流失稳的临界条件,获得了它们在临界条件下的热流体波,特别是高Pr数硅油的热流体波。结果发现:当Pr≤15.9时,临界Ma数随Pr数的增加迅速上升,此时环形池内只有一组热流体波,呈连续条纹状。当Pr>15.9后,临界Ma数随Pr数的增加变缓,环形池内由波数相同、强弱和传播角不同的两组热流体波组成,二者相互干涉形成忽明忽暗、断断续续的条纹。随着Pr数的增加,其中占据主要地位的一组热流体波变得越来越长,传播角越来越小。临界波数m_c和临界相速ω_c随Pr数的增加而降低。 In order to understand the effect of Prandtl (Pr) number on thermocapillary convection instability, the thermocapillary convection in shallow annular pools of silicon melt (Pr = 0.011) and silicone oils with Pr number ranging from 6.7 to 57.9 are investigated using linear stability analysis. The hydrothermal waves (HW) and their critical conditions for the incipience of HWs are determined, especially for those at high value of Pr number. The results indicate that the Mac increases sharply with increasing Pr number when Pr≤15.9, while it increases slightly with increasing Pr number when Pr 〉 15.9. When Pr≤15.9, there is only one group of HW in the pool. However, two groups of HW coexist in the pool and they interfere each other when Pr 〉 15.9. With increasing Pr number, the arms of the main group of HW become longer and their propagation angles decrease gradually. The critical wave number mc and critical phase velocity wc decrease with increasing Pr number.
出处 《工程热物理学报》 EI CAS CSCD 北大核心 2011年第2期250-254,共5页 Journal of Engineering Thermophysics
基金 国家自然科学基金资助项目(No.50976128) 教育部留学回国人员启动基金(教外司留(2009)1001-1) 重庆市自然科学基金项目(CSTC2008BB4301) 中国博士后基金项目(No.20080440694)
关键词 热毛细对流 普朗特数 线性稳定性分析 热流体波 thermocapillary convection Prandtl number linear stability analysis hydrothermal wave
  • 相关文献

参考文献14

  • 1Smith M K, Davis S H. Instabilities of Dynamic Thermocapillary Liquid Layers. Part 1. Convective Instabilities [J]. J. Fluid Mech., 1983, 132:119-144.
  • 2Azami T, Nakamura S, Eguchi M, et al. The Role of Surface-Tension-Driven Flow in the Formation of a Surface Pattern on a Czochralski Silicon Melt [J]. J. Crystal Growth, 2001, 233:99- 107.
  • 3Schwabe D, Zebib A, Sim B C. Oscillatory Thermocapillary Convection in Open Cylindrical Annuli. Part 1. Experiments under Microgravity [J]. J. Fluid Mech., 2003, 491:239-258.
  • 4Garnier N, Chiffaudel A. Two Dimensional Hydrothermal Waves in an Extended Cylindrical Vessel [J]. The European Phys. J. B, 2001, 19:87-95.
  • 5LI Yourong, Imaishi N, Azami T, et al. Three- Dimensional Oscillatory Flow in a Thin Annular Pool of Silicon Melt [J]. J. Crystal Growth, 2004, 260:28-42.
  • 6LI Yourong, PENG Lan, Akiyama Y, Imaishi N. Three- DimensionM Numerical Simulation of Thermocapillary Flow of Moderate Prandtl Number Fluid in an Annular Pool [J]. J. Crystal Growth, 2003, 259:374-387.
  • 7SHI Wanyuan, Imaishi N. Hydrothermal Waves in Differentially Heated Shallow Annular Pools of Silicone Oil [J]. J. Crystal Growth, 2006, 290:280-291.
  • 8石万元,李友荣,曾丹苓,今石宣之.环形浅液层内热流体波的可视化实验研究[J].工程热物理学报,2007,28(z2):101-104. 被引量:3
  • 9Hoyas S, Herrero H, Mancho A M. Bifurcation Diversity of Dynamic Thermocapillary Liquid Layers [J]. Phys. Rev. E, 2002, 66:057301-1-4.
  • 10Gelfgat A Y, Rubinov A, Bar-Yoseph P Z, et al. Numerical Study of Three-Dimensional Instabilities in a Hydrodynamic Model of Czochralski Growth [J]. J. Crystal Growth, 2005, 275:e3-e13.

二级参考文献20

  • 1[1]Smith M K,Davis S H.Instabilities of Dynamic Thermocapillary Liquid Layers.Part 1.Convective Instabilities.J.Fluid Mech.,1983,132:119-144
  • 2[2]Riley R J,Neitzel G P.Instability of Thermocapillary-Buoyancy Convection in Shallow Layer.Part 1.Characterization of Steady and Oscillatory Instabilities.J.Fluid Mech.,1998,359:143-164
  • 3[3]Schwabe D,Moller U,Schneider J,et al.Instabilities of Shallow Dynamic Thermocapillary Liquid Layers.Phys.Fluids A,1992,4(11):2368-2381
  • 4[4]Schwabe D,Benz S.Thermocapillary Flow Instabilities in an Annulus Under Microgravity-Results of the Experiment Magia.Adv.Space Rec.,2002,29(4):629-638
  • 5[5]Schwabe D,Zebib A,Sim B C.Oscillatory Thermocapillary Convection in Open Cylindrical Annuli.Part 1.Experiments Under Microgravity.J.Fluid Mech.,2003,491:239-258
  • 6[6]Peng L,Li Y R,Shi W Y,et al.Three-Dimensional Thermocapillary-Buoyancy Flow of Silicone Oil in a Differentially Heated Annular Pool.Int.J.Heat Mass Transfer,2007,50(5-6):872-880
  • 7[7]Garnier N,Chiffaudel A,Daviaud F.Hydrothermal Waves in a Disk Of Fluid.Springer Tracts in Modern Physics,2006,207(1):147-161
  • 8[8]Garnier N,Chiffaudel A.Two Dimensional Hydrothermal Waves in an Extended Cylindrical Vessel.The European Phys.J.B.,2001,19(1):87-95
  • 9[9]Shi W Y,Imaishi N.Hydrothermal Waves in Differentially Heated Shallow Annular Pools of Silicone Oil.J.Crystal Growth,2006,290(1):280-291
  • 10[1]Smith M K,Davis S H.Instabilities of Dynamic Thermocapillary Liquid Layers.Part 1.Convective Instabilities.J.Fluid Mech.,1983,132:119-144

共引文献6

同被引文献13

引证文献2

二级引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部