期刊文献+

一种基于模糊连接度和维诺图的混合分割方法 被引量:3

A HYBRID SEGMENTATION METHOD USING FUZZY CONNECTEDNESS AND VORONOI DIAGRAM CLASSIFICATION
下载PDF
导出
摘要 介绍一种可用于医学图像处理的、集成了模糊连接度和维诺图分类算法的混合分割方法。首先采用模糊连接度算法对指定图像区域进行过滤处理形成组织样本数据,这些输出数据将作为维诺图分类算法的输入数据和分类标准,然后通过维诺图分类算法对其进行迭代处理直至形成近似的图像区域边界。最终的输出值为一组分割后的三维图像数据,可以采用体绘制方法形成三维图像分割结果,也可用于进一步的图像处理。和其他医学图像分割方法相比,这种混合分割方法集成了基于区域和基于边界两种不同的分割方法,兼具两者的优点,通过两种分割方法的协同工作,提高了图像分割的精度,适用于复杂图像的分割处理。在医学图像计算机辅助诊断系统中集成了这一方法并取得了良好的实际应用效果。 This paper presents a hybrid segmentation method which integrates fuzzy connectedness and Voronoi diagram classification algorithms and is suitable for medical images processing.We start with the fuzzy connectedness filter to perform filtering treatment on designated region of images and to generate the data of tissue sample.These output data are to be used as the input data and the classification standard for Voronoi diagram classification algorithm,and then they are iterated with Voronoi diagram classification algorithm until the approximate boundary of image region is resulted.Final output is a set of segmented 3D image data that can be used to display the 3D result of the segmentation image using volume rendering techniques,or be passed to another filter for further image processing.Compared with other medical images segmentation methods,this hybrid segmentation method integrates region-based and boundary-based segmentation methods and has the advantages of the both.The synergy of two different segmentation methods tends to result in higher segmentation quality and suits some complicated segmentation tasks.We have already integrated this approach in our medical images computer-aided diagnosis system and got a satisfying result in actual application.
出处 《计算机应用与软件》 CSCD 2011年第1期105-108,共4页 Computer Applications and Software
基金 上海市大学生创业基金项目(03060009)
关键词 模糊连接度 维诺图分类 混合分割方法 体绘制 Fuzzy connectedness Voronoi diagram classification Hybrid segmentation method Volume rendering
  • 相关文献

参考文献8

  • 1Wells W, Grimson W, Kikins R. Adaptive segmentation of MRI data [ J ]. IEEE Transactions on Medical Imaging, 1996,15 (4) :429 - 442.
  • 2Haas Christine, Ermert Helmut, Holt Stephan. Segmentation of 3D intravascular ultrasonic images based on a random field model[ J]. Ultrasound in Medicine & Biology ,2000,26 ( 2 ) :297 - 306.
  • 3Imielinska C, Metaxas D, Udupa J, et al. Hybrid segmentation of the visible human data[ C ]//Proceedings of the Third Visible Human Project Conference, Bethesda, MD, 5 Oct 2000.
  • 4Rosenfeld A. The Fuzzy Geometry of Image Subsets [ J ]. Pattern Recognition Letters, 1984,2 ( 5 ) : 311 - 317.
  • 5Udupa JK, Samarasekera S. Fuzzy Connectedness and Object Definition [J]. SPIE Proceedings Medical Imaging, volume 1995:2431:2 - 10.
  • 6Imielinska C, Downes M, Yuan W. Semi-automated color segmentation of anatomical tissue [ J ]. J. of CMIG. ,2000 ( 24 ) : 173 - 180.
  • 7Roth, Scott D. Ray Casting for Modeling Solids[ J]. Computer Graphics and Image Processing, 1982( 18 ) : 109 - 144.
  • 8Blythe, David. Advanced Graphics Programming Techniques Using OpenGL[ C]//SIGGRAPH 99 Course, 1999.

同被引文献20

  • 1芦蓉,沈毅.一种改进的二维直方图的图像阈值分割方法[J].系统工程与电子技术,2004,26(10):1487-1490. 被引量:18
  • 2潘建江,杨勋年,汪国昭.基于模糊连接度的图像分割及算法[J].软件学报,2005,16(1):67-76. 被引量:31
  • 3李彬,陈武凡.基于模糊连接度的多发性硬化症MR图像自动分割算法[J].中国生物医学工程学报,2007,26(5):664-668. 被引量:7
  • 4Stelios Krinidis, Vassilios Chatzis. A robust fuzzy local infor- mation C-means clustering algorithm [J]. IEEE Transactions on Image Processing, 2010, 19 (5): 1328-1337.
  • 5Benoit Caldairou, Nicolas Passat, Piotr A Habas, et al. A non-local fuzzy segmentation method: Application to brain MRI [J]. Pattern Recognition, 2011, 44 (9): 1916-1927.
  • 6Zexuan Ji, Yong Xia. Fuzzy local Gaussian mixture model for brain MR image segmentation [J]. IEEE Transactions on In- formation Technology in Biomedicine, 2012, 2 (5): 311-317.
  • 7Jooyoung Park, Daesung Kang, Jongho Kim, et al. SVDD- based pattern denoising [J]. Neural Computation, 2007, 19 (7) : 1919-1938.
  • 8Guray Erus, Evangelia I, Zacharaki, et al. Learning high-di- mensional image statistics for abnormality detection on medical image [J]. IEEE Transactions on Medical Imaging, 2010, 10 (3): 139-145.
  • 9AK Jain. Data clustering: 50 years beyond K-means [J]. Pattern Recognition Letters, 2010, 31 (8).. 651-666.
  • 10aUmer Javed, Muharnrnad M Riaz, Abdul Ghafoor, et al. MRI brain classification using texture features, fuzzy weigh- ting and support vector machine [J]. Progress In Electromag- netics Research B, 2013, 53: 73-88.

引证文献3

二级引证文献8

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部