期刊文献+

基于混沌反控制的动态路径规划研究 被引量:2

RESEARCH ON DYNAMIC PATH PLANNING BASED ON CHAOS ANTI-CONTROL
下载PDF
导出
摘要 针对移动机器人在动态环境中常遇到的非最优路径问题,提出了基于混沌反控制并具有一定预测能力的路径规划算法。算法结合神经网络和距离传播模型,无需先验知识并且能适应动态不确定环境。通过在关键位置控制机器人进行混沌运动,可以减少等距情况下随机选择所造成的非最优路径出现的几率。在目标振荡运动且速度快于机器人的情况下,通过分析目标的轨迹和方向可以预测目标的短期运动趋势,进而实现有效追踪。仿真结果表明该算法对于减少非最短路径和路径中的尖点具有一定的作用,对于追踪速度较快的目标也有较大的成功率。 To solve the non optimized path problem that is often encountered for a mobile robot in a dynamic environment,a path planning algorithm based on chaos anti-control that possesses some prediction capability is presented.The algorithm combines the neural-network and the distance transportation model to get rid of prior knowledge to adapt to dynamic or unknown environments.The probability of the appearance of a non optimized path is reduced through random selection under an equal distance environment by controlling the chaos movements of the robot at critical locations.When a target oscillates and moves faster than the robot,its near future movement trend can be predicted by analyzing its trajectory and direction,hence an effective tracking is realized.Simulation results demonstrate that the proposed algorithm can decrease non shortest paths and nodes to a certain extent and the success rate in pursuing a comparative faster target is moderately high.
作者 贾茜 王兴松
出处 《计算机应用与软件》 CSCD 2011年第1期235-238,共4页 Computer Applications and Software
关键词 路径规划 混沌 移动机器人 Path planning Chaos Mobile robot
  • 相关文献

参考文献12

  • 1Hagras H, Callaghan V, Colley M. Learning and adaptation of an intelligent mobile robot navigator operating in unstructured environment based on a novel online Fuzzy-Genetic system[ J]. Fuzzy Sets and Systems, 2004,141 ( 1 ) : 107 - 160.
  • 2Ge S S, Lai X C, Mamun A A. Sensor-based path planning for non- holonomic mobile robots subject to "dynamic constraints[ J]. Robotics and Autonomous Systems, 2007,55 (7) :513 - 526.
  • 3Garrido S, Moreno L, Blanco D, et al. Robotic motion using harmonic functions and finite elements [J].Journal of Intelligent and Robotic Systems : Theory and Applications ,2010,59 ( 1 ) :57 - 73.
  • 4Belkhouche F. Reactive path planning in a dynamic environment [J].IEEE Transactions on Robotics, 2009,25 (4) :902 - 911.
  • 5景兴建,王越超,谈大龙.人工协调场及其在动态不确定环境下机器人运动规划中的应用[J].中国科学(E辑),2004,34(9):1021-1036. 被引量:11
  • 6Porta Garcia M A, Porta Montiel O, Castillo O, et al. Path planning for autonomous mobile robot navigation With ant colony optimization and fuzzy cost function evaluation [ J]. Applied Soft Computing Journal, 2009,9(3) :1102- 1110.
  • 7OHara K J, Walker D B, Balch T R. Physical path planning using a pervasive embedded network [ J ]. IEEE Transactions on Robotics, 2008,24( 3 ) :741 -746.
  • 8Yang S X, Meng M. Efficient neural network approach to dynamic robot motion planning[J]. Neural Networks, 2000,13(2) :143. 148.
  • 9范莉丽,王奇志,孙富春.生物激励神经网络路径规划仿真研究与改进[J].北京交通大学学报,2006,30(2):84-88. 被引量:11
  • 10Willms A R, Yang S X. An efficient dynamic system for real-time robot-path planning[ J]. IEEE Transactions on Systems, Man, and Cybernetics, Part B : Cybernetics,2006,36 (4) :755 - 766.

二级参考文献40

  • 1郭琦,洪炳熔.基于人工神经网络实现智能机器人的避障轨迹控制[J].机器人,2002,24(6):508-512. 被引量:17
  • 2赵忆文 谈大龙.基于速度场的移动障碍物局部在线避碰[A]..第三届全球智能控制与自动化大会论文集[C].合肥,2000.1271-1274.
  • 3Konstantinos J K. A Supervisory Control Strategy for Navigation for Mobile Robots in Dynamic Environments[D]. New York: Rensselaer Polytechnic Institute,1991.
  • 4Latombe J C. Robot Motion Planning[M]. Boston: Kluwer Academic publishers,1991.
  • 5Koren Y,Borenstein J. Potential field methods and their inherent limitations for mobile robot navigation[A]. Proceedings of the 1991 IEEE International Conference on Robotics & Automation[C]. California: 1991. 1398-1404.
  • 6Liu C Q,Marcelo H J,Krishnan H,et al. Virtual obstacle concept for local minimum recovery in potential-field based navigation [A]. Proceedings of the 2000 IEEE International Conference on Robotics & Automation[C]. San Francisco: 2000. 983-988.
  • 7Vadakkepat P K,Tan C,Wang M L. Evolutionary artificial potential fields and their application in real time robot path planning[A]. Proceedings of the 2000 Congress on Evolutionary Computation[C]. 2000,Vol.1. 256-263.
  • 8Park M G,Jeon J H,Lee M C. Obstacle avoidance for mobile robots using artificial potential field approach with simulated annealing[A]. ISIE[C]. Pusan Korea: 2001. 1530-1535.
  • 9陈治飞 石鸿雁 安跃军.混沌优化算法在约束最优化问题中的应用[J].控制与决策,2002,17(6):111-114.
  • 10Salichs M A, Moreno L. Navigation of mobile robots: open questions. Robotica, 2000, 18:227-234

共引文献48

同被引文献21

  • 1吴晓涛,孙增圻.用遗传算法进行路径规划[J].清华大学学报(自然科学版),1995,35(5):14-19. 被引量:76
  • 2郭丽颖,杨平,李银.超混沌Chert系统的级联反控制[J].计算技术与自己动化,2011,30(1):26-29.
  • 3祝文康.一个混沌系统的混沌特性分析及反控制[J].韶关学院学报·自然科学,2010,31(12):7-10.
  • 4胡同四.混沌反控制技术及多翼超混沌系统研究[D].上海:同济大学,2009.
  • 5Lozano-Perez T.Spatial planning:A configuration space approach[J].IEEE Transactions on Computing,1983,C-32(2):108-120.
  • 6Murray R M.Nonholonomic motion planning:steering using sinusoids[J].IEEE Transactions on Automatic Control,1993,38(5):700-716.
  • 7Amato N,Wu Y.A randomized roadmap for path manipulation planning[C]//IEEE International Conference on Robotics and Automation,1996:113-120.
  • 8Behring C,Bracho M,Castro M,et al.An algorithm for robot path planning with cellular automata[C]//Proceedings of the Fourth International Conference on Cellular Automata for Research and Industry,Karlsruhe(D),2000;11-19.
  • 9Barraquand J,Langlois B,Latombe J C.Numerical potential field techniques for robot path planning[J].IEEE Transactions on System,Man and Cybernetics,1992,22(2):224-241.
  • 10Hwang Y,Ahuja N.A potential field approach to path planning[J].IEEE Transactions on Robotics and Automation,1992,8(1):23-32.

引证文献2

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部