期刊文献+

半线性抛物方程支配系统的最优性条件 被引量:4

Optimality Condition of System Governed by Semilinear Parabolic Equation
原文传递
导出
摘要 本文讨论了控制变量含于高阶导数项系数中的抛物型偏微分方程支配系统的最优控制问题,给出了最优控制的必要条件. In this paper, we consider the system governed by a semilinear parabolicequation involving control in coefficients, and give the necessary conditions for optimalcontrol.
出处 《数学学报(中文版)》 SCIE CSCD 北大核心 1999年第4期705-714,共10页 Acta Mathematica Sinica:Chinese Series
基金 国家自然科学基金
关键词 半线性 支配系统 抛物型方程 最优性条件 Necessary condition, Optimal control, Semilinear parabolic equation
  • 相关文献

参考文献4

  • 1Li X,Optimal Control Theory Infinite Dimensional Systems Birkhauser,1995年
  • 2Li X,SIAM J Control Optim,1991年,29卷,6期,895页
  • 3Li X,Lecture Notes in Control and Information Science,1985年,75期,410页
  • 4Li X,Proc IFAC 3rd Sympo Control of Distributed Parameter Systems Toulouse,1982年

同被引文献30

  • 1李晓红,冯恩民,修志龙.微生物间歇发酵非线性动力系统的性质及最优控制[J].运筹学学报,2005,9(4):89-96. 被引量:8
  • 2李晓红,冯恩民,修志龙.微生物连续培养非线性动力系统的性质及最优性条件[J].工程数学学报,2006,23(1):7-12. 被引量:3
  • 3Z.L. Xiu, B.H. Song, et al. Optimization of dissimilation of glycerol to 1,3-propanediol by Klebsiella pneumoniae in one- and two-stage anaerobic cultures[J]. Biochem, Eng. J., 2004, 19: 189-197.
  • 4C.X. Gao, K.Z. Li, et ah Nonlinear impulsive system of fed-batch culture in fermentative production and its properties[J]. Chaos Solutions Fractals, 2006, 28: 271-277.
  • 5G. Wang, E.M. Feng, Z.L. Xiu. Modelling and parameter identification of microbial biconversion in fed-batch cultures[J]. J. Process Contr., 2008, 18: 458-464.
  • 6Wang H Y,Feng E M, Xiu Z L. Optimality condition of the nonlinear impulsive system in fed-batch fermentation[J]. Nonlinear Analysis TMA, 2008, 68(1): 12-23.
  • 7Hartl R F, Sathi S P, Vickson R G. A survey of the maximum principles for optimal control problem with state constraints[J]. SIAM Review, 1995, 37(2): 181-218.
  • 8Zeiden V. The riccati equation for optimal control problems with mixed state-control constraints: necessity and sufficiency[J]. SIAM Journal on Control and Optimization, 1994, 32(5): 1297-1321.
  • 9Polak E. Optimazation Algorithms and Consistent Approximation[M]. Springer, New York, 1997.
  • 10Dontchev A.S., Hager W.W., Poore A.B. Optimality, stability and convergence in nonlinear control[J]. Journal of Applied Mathematics and Optimization, 1995, 31(3): 297-326.

引证文献4

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部