期刊文献+

基于头顶点三维运动轨迹的身份识别新方法 被引量:2

Human Identification Based on 3D Tracking Trajectory of Head Vertex
下载PDF
导出
摘要 提出了一种基于头顶点三维运动轨迹的身份识别新方法,并对相关的基本问题进行了较为系统的研究.人在行走时,从头顶点三维运动轨迹中可提取出人体侧视平面上的身高波动信息和人体俯视平面上的摇摆运动信息.从身高波动信息可提取身高参数(身高均值、身高幅值)和步幅参数(步幅长度、步幅频率);这些参数已被证实可作为身份识别的特征参数.本文通过实验进一步证实,从摇摆运动信息提取的摇摆参数(摇摆均值、摇摆幅值和摇摆角)也具有一定的识别力.综合身高参数、步幅参数和摇摆参数,得到一组识别力更强、更稳定的特征组合,从而验证了头顶点三维运动轨迹这种新的生物特征用于身份识别的有效性. A novel biometric method for human identification is proposed based on 3D tracking trajectory of head vertex,accompanied by a systematic study on the related basic problems.Vertical displacement in sagittal plane and lateral displacement in transverse plane can be extracted from the 3D tracking trajectory of head vertex.Previous work has demonstrated effective use of height parameters(height mean and height amplitude) and stride parameters(stride length and cadence) extracted from vertical displacement for human identification.In this paper,we further extract swing parameters(swing mean,swing amplitude,and swing angle) from lateral displacement as additional discriminant features.A group of discriminant and robust features are obtained by integrating height parameters,stride parameters,and swing parameters.Experimental results confirm the effectiveness of the proposed method.
出处 《自动化学报》 EI CSCD 北大核心 2011年第1期28-36,共9页 Acta Automatica Sinica
基金 国家自然科学基金(50177025)资助~~
关键词 生物特征 头顶点的三维运动轨迹 身高波动信息 摇摆运动信息 身份识别 Biometric trait 3D tracking trajectory of head vertex vertical displacement lateral displacement human identification
  • 相关文献

参考文献21

  • 1Jain A K, Flynn P, Ross A A. Handbook of Biometrics. New York: Springer-Verlag, 2007. 1-22.
  • 2Li S Z, Schouten B, Tistarelli M. Biometrics at a distance: issues, challenges, and prospects. Handbook of Remote Biometrics for Surveillnnce nnd Security. London: Springer, 2009. 3-21.
  • 3Nixon M S, Tan T N, Chellappa R. Human Identification Based on Gait. New York: Springer-Verlag, 2005.
  • 4Seely R D, Goffredo M, Carter J N, Nixon M S. View invariant gait recognition. Handbook of Remote Biometrics for Surveillance and Security. London: Springer, 2009. 61-81.
  • 5Perry J. Gait Analysis: Normal and Pathological Function. New Jersey: SLACK, 1992. 131-142.
  • 6Vaughan C L, Davis B L, O'Connor J C. Dynamics of Human Gait. Cape Town: Kiboho Publishers, 1999. 7-14.
  • 7Inman V -T, Ralston H J, Todd F. Human Walking. Baltimore: Williams and Wilkins, 1981.
  • 8Huang P S, Harris C J, Nixon M S. Recognising humans by gait via parametric canonical space. Arti~cial Intelligenee in Engineering, 1999, 13(4): 359-366.
  • 9Boyd J E. Synchronization of oscillations for machine perception of gaits. Computer Vision and Image Understanding, 2004, 96(1): 35-59.
  • 10Zhang R, Vogler C, Metaxas D. Human gait recognition at sagittal plane. Image and Vision Computing, 2007, 25(3): 321-330.

二级参考文献15

  • 1Toyama K, Krumm J, Brumitt B, Meyers B. Wallflower: principles and practice of background maintenance. In: Proceedings of the 7th International Conference on Computer Vision. Kerkyra, Greece: IEEE, 1999. 255-261
  • 2Wren C R, Azarbayejani A, Darrell T, Pentland A P. Pfinder: real-time tracking of the human body. IEEE Transactions on Pattern Analysis and Machine Intelligence, 1997, 19(7): 780-785
  • 3Stauffer C, Grimson W E L. Adaptive background mixture models for real-time tracking. In: Proceedings of the Computer Society Conference on Computer Vision and Pattern Recognition. Fort Collins, USA: IEEE, 1999. 246-252
  • 4Kacwtrakulpong P, Bowden R. An improved adaptive background mixture model for real-time tracking with shadow detection. In: Proceedings of the 2nd European Workshop on Advanced Video Based Surveillance Systems. Providence, USA: Kluwer Academic Publishers, 2001. 1-5
  • 5Elgammal A M, Harwood D, Davis L S. Non-parametric model for background subtraction. In: Proceedings of the 6th European Conference on Computer Vision. London, UK: Springer, 2000. 751-767
  • 6Li L Y, Huang W M, Gu I Y H, Tian Q. Foreground object detection from videos containing complex background. In: Proceedings of the llth ACM International Conference on Multimedia. Berkeley, USA: ACM, 2003. 2-10
  • 7Kim K, Chalidabhongse T H, Harwood D, Davis L S. Background modeling and subtraction by codebook construction. In: Proceedings of International Conference on Image Processing. Singapore, Singapore: IEEE, 2004. 3061-3064
  • 8Parag T, Elgammal A M, Mittal A. A framework for feature selection for background subtraction. In: Proceedings of the Computer Society Conference on Computer Vision and Pattern Recognition. New York, USA: IEEE, 2006. 1916-1923
  • 9Huang S S, Fu L C, Hsiao P Y. Region-level motion-based background modeling and subtraction using MRFs. IEEE Transactions on Image Processing, 2007, 16(5): 1446-1456
  • 10Sheikh Y, Shah M. Bayesian modeling of dynamic scenes for object detection. IEEE Transactions on Pattern Analysis and Machine Intelligence, 2005, 27(11): 1778-1792

共引文献11

同被引文献34

  • 1薛召军,李佳,明东,万柏坤.基于支持向量机的步态识别新方法[J].天津大学学报,2007,40(1):78-82. 被引量:15
  • 2Little J K,Boyd J E. Recognizing People by Their Gait:The Shape of Motion[J].Video:Journal of Computer Vision Research,1998,(02):2-32.
  • 3Han Ju,Bhanu B. Statistical Feature Fusion for Gait-Based Human Recognition[A].Washington DC USA,2004.842-847.
  • 4Chen Changhong,Liang Jimin,Zhao Heng. Factorial HMM and Parallel HMM for Gait Recognition[J].IEEE Transactions on Systems Man and Cybernetics,2009,(01):114-123.
  • 5Ekinci M. Human Identification Using Gait[J].Turkish Journal of Electrical Engineering and Computer Sciences,2006,(02):267-291.
  • 6Lu Jiwen,Zhang Erhu. Gait Recognition for Human Identification Based on ICA and Fuzzy SVM through Multiple Views Fusion[J].Pattern Recognition Letters,2007,(16):2401-2411.
  • 7Wang Liang,Ning Huazhong,Tan Tieniu. Fusion of Static and Dynamic Body Biometrics for Gait Recognition[J].IEEE Transactions on Circuits and Systems for Video Technology,2004,(02):149-158.
  • 8Wang Liang,Tan Tieniu,Hu Weiming. Automatic Gait Recognition Based on Statistical Shape Analysis[J].IEEE Transactions on Image Processing,2003,(09):1120-1131.
  • 9Lam T M W;Lee R S T.A New Representation for Human Gait Recognition:Motion Silhouettes Image (MSI)[A]香港,2006612-618.
  • 10Shakhnarovich G,Lee L,Darrell T. Integrated Face and Gait Recognition from Multiple Views[A].Kauai,USA,2001.439-446.

引证文献2

二级引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部