期刊文献+

基于邻域统计分布变化分析的UWB SAR隐蔽目标变化检测 被引量:10

UWB SAR Change Detection of Target in Foliage Based on Local Statistic Distribution Change Analysis
下载PDF
导出
摘要 该文针对载机不同航迹条件下所得多时相UWB SAR图像灰度值存在较大起伏,严重影响了基于像素灰度值差异的变化检测算法性能,提出了一种基于邻域统计分布变化分析的UWB SAR隐蔽目标变化检测方法。该方法将Gram-Charlier展开理论同秩序滤波器相结合对多时相图像中每个像素邻域的统计分布进行估计,进而借助K-L散度理论对多时相图像邻域统计分布变化进行定量分析以检测目标对应的变化区域。实验结果表明,该文方法能够更好地适应不同航迹UWB SAR图像间灰度起伏的影响,取得更好的检测结果。 Because of large pixel value change between multitemporal UWB SAR images caused by different imaging geometries,the performance of change detection algorithm based on pixel value difference declines quickly.In order to deal with this problem,a new UWB SAR foliage target change detection algorithm based on local statistic distribution is proposed.In the algorithm,the Gram-Charlier expansion theory and rank order filter are combined to estimate local statistic distribution.Then,the K-L divergence is used to measure the change between local statistic distribution of multitemporal UWB SAR image.And the target can be detected because of large K-L divergence value.Finally,the experimental results show that the algorithm can better deal with the pixel value change between multitemporal UWB SAR images with different imaging geometries and an obvious performance improvement on detection can be obtained.
出处 《电子与信息学报》 EI CSCD 北大核心 2011年第1期49-54,共6页 Journal of Electronics & Information Technology
基金 教育部新世纪优秀人才支持计划(NCET-07-0223) 国家自然科学基金(60972121) 国防科大科研计划项目(JC09-04-01)资助课题
关键词 超宽带合成孔径雷达 叶簇隐蔽目标检测 变化检测 Gram-Charlier展开 K-L散度 Ultra-Wide Band SAR(UWB SAR) FOliage PENetration(FOPEN) detection Change detection Gram-Charlier expansion K-L divergence
  • 相关文献

参考文献10

  • 1Ulander M H. Modeling of change detection in VHF- and UHF-band SAR [C]. EUSAR2008, Fridrichshafen, 2008, 2: 127-131.
  • 2Novak L. Target recognition and polarimetric SAR[R]. Tutorial of 2008 IEEE Radar Conference, Rome, 2008, Tutorial #13.
  • 3Novak L. Algorithms for SAR Change Detection, Compression and super-resolution[R]. Tutorial of 2009 International Radar Conference, 2009, Bordeaux, Tutorial#10.
  • 4Lundberg M, Ulander M H, Pierson E, and Gustavsson A. A challenge problem for detection of targets in foliage[C]. Conference on Algorithms for Synthetic Aperture Radar Imagery, Orlando, 2006, SPIE 6237: 1-12.
  • 5Lundberg M, Ulander M H, PiersonE, and Gustavsson A. Change detection for low-frequency SAR ground surveillance[J], lEE Prodeedings Radar sonar and navigation, 2005, 152(6): 413-420.
  • 6杨志国,黄晓涛,周智敏.SAR目标检测中的一种稳健变化检测算法[J].电子与信息学报,2008,30(9):2094-2098. 被引量:2
  • 7CavalMcante C C, Mota C M, and Romano M T. Polynomial expansion of the probability density function about gaussian mixtures [C]. IEEE Workshop on machine learning for signal processing, Sao Luis, 2004: 163-172.
  • 8Haykin S. Neural Network: A Comprehensive Foundation. 2nd Edition[M]. New Jersey: Prentice Hall, New Jersey, 1999: 566 -567.
  • 9FOI. CARABAS-II VHF SAR data set[DB/OL], Http:// www, sdms. afrl.af.mil/datasets, 2005.
  • 10Fung T and Ledrew E. The determination of optimal threshold levels for changes detection using various accuracy indices[J]. Photogrammetric Engineering and Remote Sensing 1988, 54(10): 1449-1454.

二级参考文献7

  • 1Novak L M, Halversen S D, Owirka G J, and Hiett M. Effect of polarization and resolution on SAR ATR[J]. IEEE Trans. on Aerospace and Electronic Systems, 1997, 33(1): 102-115.
  • 2Kapoor R, Banerjee A, Tsihrintzis G A, and Nandhakumar N. UWB radar detection of targets in foliage using alpha-stable clutter models[J]. IEEE Trans. on Aerospace and Electronic Systems, 1999, 35(3): 819-834.
  • 3Allen M R, Jauregui J M, and Hoff L E. FOPEN-SAR detection by direct use of simple scattering physics[A]. In: Proceedings of the IEEE International Radar Conference[C], Atlanta Georgia, USA, 1995: 152-157.
  • 4Subotic N S, Collins L M, Gorman J D, and Thelen B J. Multiresolution target detection in SAR imagery[A]. In: Proceedings of the International Conference on Acoustics, Speech, and Signal Processing[C], Detroit MI, USA, 1995, 4: 2157-2160.
  • 5Ulander L M H, Lundberg M, Pierson W, and Gustavsson A. Change detection for low-frequency SAR ground surveillance [J]. IEE Proc.-Radar Sonar Navig., 2005, 152(6): 413-420.
  • 6Halversen S D, Nanis J G, Owirka G J, and Novak L M. Comparison of ultrawideband SAR target detection algorithms[A]. In: Proceedings of SPIE on Algorithms for Synthetic Aperture Radar Imagery[C]. New York, USA, 1994, 2230: 230-243.
  • 7Razmey K I and Soumekh M. Signal subspace change detection in averaged multitook SAR imagery[J]. IEEE Trans. on Geoscience and Remote Sensing, 2006, 44(1): 201-213.

共引文献1

同被引文献80

  • 1庞海洋,刘凯龙,王岩飞.基于假设检验及SAR图像统计分布特性的伪装效果评价方法[J].吉林大学学报(工学版),2013,43(S1):313-316. 被引量:1
  • 2RANNEY I, SOUMEKH I. Signal subspace change detection in averaged multilook SAR imagery[J]. IEEE Transactions on GRS, 2006, 44(1): 201-213.
  • 3LI J S, HOPPEL K W, MANGO SA, et al. Intensity and phase statistics of multilook polarimetric and interferometric SAR imagery[J]. IEEE Transactions on GRS, 1994, 32(5): 1017-1027.
  • 4WARD K D. Compound representation of high resolution sea clutter[J]. Electronics Letters, 1981, 17(16):561-563.
  • 5REDDING N J. Estimation the Parameters of the K Distribution in the Intensity Domain[R]. DSTO Electronics and Surveillance Laboratory, South Austraiica, 1999. 14-15.
  • 6黄勇.SAR图像变化检测及相关技术研究[D].成都:电子科技大学,2007.5-6.
  • 7FLEISCHAMAN J G. Foliage penetration experiment[J]. IEEE Transactions on AES, 1996, 32(1): 134-164.
  • 8KAPPOR R, BANERJEE A, TSIHEINRZIS G A, et al. UWB radar detection of targets in foliage using alpha-stable clutter model[J]. IEEE Transactions on GRS, 1998, 34(3): 706-715.
  • 9DAVIS M E. Technical challenges in ultra-wideband radar development for target detection and terrain mapping[A]. IEEE Radar Conference 1999[C]. Waltham, 1999. 1-6.
  • 10NOVAK L. Algorithms for SAR change detection, compression and super-resolution[A]. International Radar Conference 2009 [C]. Bordeaux, 2009. 1-10.

引证文献10

二级引证文献86

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部