期刊文献+

一种数值稳健且低复杂度的信号子空间估计新方法 被引量:7

A Numerically Robust and Low-complexity Method of Signal Subspace Estimation
下载PDF
导出
摘要 该文提出了一种数值稳健且低复杂度的信号子空间估计新方法。该方法通过多级维纳滤波器前向迭代构造观测数据协方差矩阵三对角化的转换矩阵,其列向量为信号子空间的一组正交基。与传统的相关相减结构结构相比,该文的多级维纳滤波器前向迭代通过Householder酉变换实现,显著增强了有限精度运算中信号子空间基向量的正交性,提高了数值稳健性。此外,基于Householder矩阵的酉性质和矩阵后向累积提出了一种转换矩阵的快速计算方法,降低了计算复杂度。计算机仿真结果验证了该方法的数值稳健性和计算效率。 A numerically robust and low-complexity method of signal subspace estimation is proposed in the paper.The transform matrix to tridiagonalize the covariance matrix of observation data is constructed in the forward recursion of multistage Wiener filter(MSWF),and its columns span the signal subspace.Compared with the traditional method of correlation subtractive structure,the forward recursion in the method is implemented with the Householder unitary transform.Therefore,it strengthens significantly the orthogonality of basis vectors in the signal subspace and improves the numerical robustness,especially in the finite-precision implementation.Besides,a method of calculating the transform matrix is proposed to reduce the computational complexity based on the unitary property of the Householder matrix and backward accumulation of matrices.Finally,simulation results demonstrate the numerical robustness and computational efficiency of the proposed method.
出处 《电子与信息学报》 EI CSCD 北大核心 2011年第1期90-94,共5页 Journal of Electronics & Information Technology
关键词 信号子空间估计 多级维纳滤波器 Householder酉变换 后向累积 Signal subspace estimation MultiStage Wiener Filter(MSWF) Householder unitary transform Backward accumulation
  • 相关文献

参考文献10

  • 1Xu G and Kailath T. Fast subspace decomposition [J]. IEEE Transactions on Signal Processing, 1994, 42(3): 539-551.
  • 2Goldstein J S, Reed I S, and Scharf L L. A multistage representation of the Wiener filter based on orthogonal projections [J]. IEEE Transactions on Information Theory, 1998, 44(7): 2943-2959.
  • 3丁前军,王永良,张永顺.自适应阵列中多级维纳滤波器的有效实现算法[J].电子与信息学报,2006,28(5):936-940. 被引量:15
  • 4Huang L and Wu S. Low-complexity MDL method for accurate source enumeration [J]. IEEE Signal Processing Letters, 2007, 14(9): 581-584.
  • 5Huang L, Wu S, and Li X. Reduced-rank MDL method for source enumeration in high-resolution array processing {J]. IEEE Transactions on Signal Processing, 2007, 55(12): 5658-5667.
  • 6Huang L, Long T, and Wu S. Source enumeration for high resolution array processing using improved Cerschgorin radii without eigendecompostion [J]. IEEE Transactions on Signal Processing, 2008, 56(12): 5916-5925.
  • 7沈明威,朱岱寅,朱兆达.基于多级维纳滤波器的非均匀ΣΔ-STAP研究[J].电子与信息学报,2008,30(6):1308-1311. 被引量:2
  • 8刘敏,金光明,戴旭初.一种基于多级维纳滤波的信号子空间快速估计方法[J].中国科学技术大学学报,2009,39(8):792-797. 被引量:4
  • 9Werner S, With M, and Koivunen V. Householder multistage Wiener filter for space-time navigation receivers [J]. IEEE Transactions on Aerospace and Electronic Systems, 2007, 43(3): 975-988.
  • 10Golub G and Loan C V. Matrix Computations [M]. 3nd ed. Baltimore. The Johns Hopkins University Press, 1996: 208-213.

二级参考文献25

  • 1黄磊,吴顺君,张林让,冯大政.快速子空间分解方法及其维数的快速估计[J].电子学报,2005,33(6):977-981. 被引量:44
  • 2丁前军,王永良,张永顺.一种多级维纳滤波器的快速实现算法——迭代相关相减算法[J].通信学报,2005,26(12):1-7. 被引量:10
  • 3Goldstein J S, Reed I S, Scharf L L. A Multistage representation of the Wiener filter based on orthogonal projection [J].IEEE Transactions on Information Theory, 1998, 44(7): 2 943-2 959.
  • 4Hiemstra J D, Goldstein J S. Robust rank selection for the multistage Wiener filter[C]//Proceedings of IEEE International Conference on Acoustics, Speech, and Signal Processing. INSPEC, 2002, 3: 2 929-2 932.
  • 5Yang B. Projection approximation subspace tracking [J]. IEEE Transactions on Signal Processing, 1995, 43(1) : 95-107.
  • 6G0lubGH,vanLoanCF.矩阵计算[M].袁亚湘等译,北京:科学出版社,2001.
  • 7Weippert M E, Hiemstra J D, Goldstein J S, et al.. Insights from the relationship between the multistage Wiener filter and the method of conjugate gradients. 2^nd IEEE Sensor Array and Multichannel Signal Processing Workshop (SAM 2002), Rosslyn VA, August 2002:388 - 392.
  • 8Joham M, Zoltowski M D. Interpretation of the multi-stage nested Wiener filter in the Krylov subspace framework. Tech. Rep.TUM-LNS-TR-00-6, Munich University of Technology,November 2000. Also: Technical Report TR-ECE-00- 51,Purdue University.
  • 9Goldstein J S, Reed I S, Scharf L L, A multistage representation of the Wiener filter based on orthogonal projections. IEEE Trans.on Information Theory, 1998, 44 (7): 2943 - 2959.
  • 10Ricks D C, Goldstein J S. Efficient architectures for implementing adaptive algorithms. Proceedings of the 2000 Antenna Applications Symposium, Allerton Park, Monticello, IL,Sept. 2000:29 - 41.

共引文献17

同被引文献64

引证文献7

二级引证文献25

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部