期刊文献+

数据流滑动窗口连接的卸载策略研究 被引量:1

Load Shedding Strategies on Sliding Window Joins over Data Streams
下载PDF
导出
摘要 随着数据流应用系统的快速发展,数据流管理系统对数据库技术提出了巨大挑战.针对数据流上的滑动窗口连接操作,提出一些新的卸载技术,使得系统在过载的情况下卸载连接结果少的元组,从而最大化输出结果.双窗口模型和辅助窗口统计信息的建立保证了预估连接结果的可靠性,同时应用线段树使卸载的判断更加高效.当流速过快、系统处理能力无法与之同步时,通过前端卸载和后端卸载的配合使用达到理想的语义卸载,得到最大子集的连接结果.实验验证该卸载策略的性能好于现有其他方法. With the development of data stream application,data stream management system DSMS brings tremendous challenges in database techniques.As a data stream is continual and time-varying,it requires that DSMS should be adaptive.When the data arrival rate exceeds the system resource limit,the system performance degrades or system may even breaks down.Load shedding is one of the most promising ways to solve the problem.In this paper,several load shedding techniques over sliding window joins are addressed.Firstly,a dual window architectural model including aux-windows and join-windows is proposed.The former is used in the join of two streams,while the latter is used in building the statistics of the estimated join results.With the statistics,an effective load shedding strategy can produce maximum subset of join outputs.In order to accelerate the load shedding process,segment trees have been utilized to reduce the cost on shedding evaluation.Secondly,front-shedding will be cooperated with rear-shedding when streams have high arrival rates,in which the front-shedding adopts random shedding and rear-shedding adopts semantic shedding.Lastly,the experiments based on extensive experiments with synthetic data and real life data show that these new load shedding methods have superb performance of join outputs compared with dominates the existing strategies.
出处 《计算机研究与发展》 EI CSCD 北大核心 2011年第1期103-109,共7页 Journal of Computer Research and Development
基金 国家自然科学基金项目(60773221 60773219 60803026) 教育部博士学科点新教师基金项目(20070145112)
关键词 数据流 滑动窗口连接 卸载技术 语义卸载 线段树 data stream sliding window joins load shedding semantic shedding segment tree
  • 相关文献

参考文献18

  • 1Abadi D, Carney D, Cetintemel U, et al. Aurora: A new model and architecture for data stream management [J]. VLDB Journal, 2003, 12(2): 120-139.
  • 2Abadi D, Ahmad Y, Balazinska M, et al. The design of the Borealis stream processing engine [C] //Proc of the 2nd CIDR Conf. New York: ACM, 2005:277-289.
  • 3The STREAM Group. STREAM: The stanford stream data manager [J]. IEEE Data Engineering Bulletin, 2003, 26 (1): 19-26.
  • 4Chen J, DeWitt D, Tian F, et al. NiagaraCQ: A scalable continous query system for internet databases[C] //Proc of the 19th ACM SIGMOD Conf. New York: ACM, 2000 : 379-390.
  • 5Chandrasekaran S, Deshpande A, Franklin M, et al. TelegraphCQ: Continuous dataflow processing for an uncertain world [C] //Proc of the 1st CIDR Conf. New York: ACM, 2003, 668-668.
  • 6Tatbul N, Cetintemel U, Zdonik S, et al. Load shedding in a data stream manager[C] //Proc of the 29th ACM VLDB Conf. San Francisco: Margan Kaufmann, 2003:309-320.
  • 7Ayad A, Naughton J. Static optimization of conjunctive queries with sliding windows over infinite streams [C] //Proc of the 23th ACM SIGMOD Conf. New York: ACM, 2004:419-430.
  • 8Das A, Gehrke J, Riedewald M. Approximate join processing over data streams [C] //Proc of the 22nd ACM S1GMOD Conf. New York: ACM, 2003: 40-51.
  • 9Xie J, Yang J, Chen Y. On joining and caching stochastic streams [C] //Proc of the of 24th ACM SIGMOD Conf. New York: ACM, 2005:359-370.
  • 10Kang J, Naughton J, Viglas S. Evaluating window joins over unbounded streams [C]//Proc of the 19th ICDE Conf. Los Alamitos, CA: IEEE Computer Society, 2003:341-352.

二级参考文献9

  • 1S Madden, M A Shah, J M Hellerstein, et al. Continuously adaptive continuous queries over streams. In: Proc of SIGMOD 2002. New York: ACM Press, 2002. 49~60
  • 2S Chandrasekaran, M J Franklin. Streaming queries over streaming data. In: Proc of VLDB2002. San Francisco: Morgan Kaufmann, 2002. 203~214
  • 3D Carney, U Cetintemel, M Chemiack, et al. Monitoring streams-A new class of data management applications. In: Proc of VLDB2002. San Francisco: Morgan Kaufmann, 2002. 215~226
  • 4N Tatbul, U Cetintemel, S B Zdonik, et al. Load shedding in a data stream manager. In: Proc of VLDB2003. San Francisco:Morgan Kaufmann, 2003
  • 5M A Hammad, M J Franklin, W G Aref, et al. Scheduling for sharedwindow joins over data streams. In: Proc of VLDB2003.San Francisco: Morgan Kaufmann, 2003
  • 6Brian Babcock, Mayur Datar, Rajeev Motwani. Load shedding for aggregation queries over data streams. In: Proc of ICDE2004.Los Alamitos, CA: IEEE Computer Society Press, 2004
  • 7S Acharya, P B Gibbons, V Posala, et al. Join synopses for approximate query answering. In: Proc of SIGMOD1999. New York: ACM Press, 1999. 275~286
  • 8W Hoeffding. Probability inequalities for sums of bounded random variables. Joumal of the American Statistical Association, 1963,58(301): 13~30
  • 9Intemet Traffic Archive, trace LBL-TCP-3. http://www. acm.org/sigcomm/ITA/, 2004-05

共引文献3

同被引文献9

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部