期刊文献+

一种基于被动路标的网络距离预测方法 被引量:1

A Novel Passive-Landmark Based Network Distance Prediction Method
下载PDF
导出
摘要 网络拓扑信息的引导能够显著提高大规模分布式应用程序的性能,然而直接测量节点之间拓扑信息产生的开销远大于其收益.提出一种新的基于被动路标的节点间网络距离预估方法PLNDP,使用Lipschitz变换将普通节点到路标节点的网络延迟映射到度量空间Rn,再利用距离函数计算映射后的网络坐标之间的距离,从而预测节点之间的网络距离.PLNDP中路标节点不需要主动探测,可利用Internet上已部署的高性能服务器为之,极大降低部署成本.引入有效路标和修正因子,提高了预测的准确性.实验结果表明,与经典方法GNP和Vivaldi相比,PLNDP在多个性能参数方面具有明显的优势. With the direction of network topology information,the performance of large scale distributed applications could be enhanced greatly.However,if the topology information between nodes is obtained by directly measure,the cost of the probing packets may be more than the gain from the performance improvement.This paper proposes a novel passive landmark based network distance prediction method-PLNDP.The vector of transmission delay from normal node to landmarks is embedded into the metric space Rn by the Lipschitz transformation.After getting the network coordinates,normal nodes use the distance function to compute the distance between coordinates.Then the network distances between nodes is predicted by the distance between nodes' coordinates.Unlike other network coordinates system,landmarks in PLNDP only need to respond to probes passively,while not measuring distances to other landmarks actively.Existing high performance public servers,such as DNS servers and Web servers,can be used as landmarks.So the cost of deployment can be reduced greatly.In order to improve the prediction accuracy,valid landmarks and correctional factor are used in the distance function.Experiment results show that,for several different accuracy metrics,PLNDP is better than classical network distance prediction methods GNP and Vivaldi,especially when some landmarks have been failed.
出处 《计算机研究与发展》 EI CSCD 北大核心 2011年第1期125-132,共8页 Journal of Computer Research and Development
基金 国家自然科学基金项目(60603061)
关键词 网络距离 被动路标 空间嵌入 网络坐标 分布式应用 network distance passive-landmark embedding network coordinates system distributed applications
  • 相关文献

参考文献16

  • 1Moore K, Cox J, Green S. Sonar A network proximity service[EB/OL]. 1996[2009-08 06]. http://www, netlib. org/ut k/proiect s/sonar/.
  • 2Francis P. Host proximity service (Hops) [EB/OL]. 1998. [2009-08 06]. http://datatracker, ietf. org/wg/hops/.
  • 3Ng T S E, Zhang Hui. Predieting Internet network distance with coordinates-based approaches [C] //Proc of Infocom 2002. Los Alamitos, CA: IEEE Computer Society, 2002: 170-179.
  • 4Nelder J A, Mead R. A simplex method for function minimization[J]. Computer Journal, 1965, 7(1):308-313.
  • 5Manuel C, MigucI C, Antony R, et al. PIC: Practical Internet coordinates for distance estimation [C] //Proc of ICDCS 2004. Los Alamitos, CA: IEEE Computer Society, 2004, 178-187.
  • 6Marcelo P, Jon C, Steve W, et al. Lighthouses for scalable distributed location[C] //Proc of IPTPS 2003. Berlin: Springer, 2003:278-291.
  • 7Hyuk L, Jennifer C H, ChongHo C, et al. Constructing lnternet coordinate system based on delay measurement [J]. IEEE/ACM Trans on Networking, 2005, 13(3): 513-525.
  • 8Tang Liying, Mark C. Virtual landmarks for the Internet [C] //Proc of IMC 2003. New York: ACM, 2003.- 143-152.
  • 9Mao Yun, Saul L K. Modeling distance in large-scale networks toy matrix factorization [C] //Proc of IMC 2004. New York: ACM 2004:278-287.
  • 10Frank D, Russ C, Frans K, et al. Vivaldi: A decentralized network coordinate system [C] //Proc of ACM SIGCOMM 2004. New York: ACM, 2004:15-26.

同被引文献16

  • 1Dabek F, Cox R, Kaashoek F, et al. Vivaldi: A decentralized network coordinate system [C] //Proc of ACM SIGCOMM 2004. New York: ACM, 2004: 15-26.
  • 2Venugopalan D, Malkhi F, Kuhn, et al. On the treeness of Internet latency and bandwidth [C] //Proc of ACM SIGMETRICS2009. NewYork:ACM, 2009: 61-72.
  • 3Lumezanu C, Spring N. Measurement manipulation and space selection in network coordinates[C]//Proc of ICDCS 2008. Piscataway, NJ: IEEE, 2008:361-368.
  • 4Wang G, Zhang B, Ng T S E. Towards network triangle inequality violation aware distributed systems [C] //Proc of the 7th ACM SIGCOMM Conf on Internet Measurement. New York: ACM, 2007:175-188.
  • 5Kaafar M A, Gueye B, Cantin F, et al. Towards a two-tier Internet coordinate system to mitigate the impact of triangle inequality violations [C] //Proc of IFIP Networking. Berlin: Springer, 2008:397-408.
  • 6Zheng H, Lua E K, Pias M, et al. Internet routing policies and round-trip-times [C] //Proc of PAM 2005. Berlin: Springer, 2005:236-250.
  • 7Labovitz C, Iekel-Johnson S, McPherson D, et al. Internet inter-domain traffic [C] //Proc of ACM SIGCOMM 2010. New York: ACM, 2010: 75-86.
  • 8Lee S, Zhang Z, Sahu S, et al. On suitability of Euclidean embedding for host-based network coordinate systems [J]. IEEE/ACM Trans on Networking, 2010, 18(1): 27-40.
  • 9Hotz S. Routing information organization to support scalable interdomain routing with heterogeneous path requirements [D]. Los Angeles: University of Southern California, 1994.
  • 10Ng T S E, Zhang H. Predicting Internet network distance with coordinates-based approaches [C]//Proc of IEEE INFOCOM2002. Piscataway, NJ: IEEE, 2002:170-179.

引证文献1

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部