期刊文献+

面向数值型敏感属性的分级l-多样性模型 被引量:23

A Multi-Level l-Diversity Model for Numerical Sensitive Attributes
下载PDF
导出
摘要 近年来,数据发布隐私保护问题受到了广泛关注,相继提出了多种隐私保护匿名模型.l-多样性模型是其中保护个体隐私的有效方法,但现有的l-多样性模型只适合处理分类型敏感属性,不适合处理数值型敏感属性.为此,提出面向数值型敏感属性的分级l-多样性模型,包括分级相异l-多样性、分级信息熵l-多样性和分级递归(c,l)-多样性.所提出的模型首先将数值型敏感属性域分级,再基于分级信息实现数值型敏感属性的l-多样性.设计了实现这些模型的l-Incognito算法.并且从匿名表的多样性角度进行了比较,实验表明分级l-多样性表比未分级的l-多样性表具有更高的多样度,因此具有更强的抵制同质性攻击和背景知识攻击的能力. Privacy preservation in data publishing has gained wide concern in databases recently.There are various anonymity models proposed for preserving privacy.The l-diversity is an effective model to preserve individual privacy while publishing data.However,the l-diversity model is suitable for processing categorical sensitive attributes,rather than numerical sensitive attributes,which can not effectively thwart homogeneity attack and background knowledge attack for numerical sensitive attributes.To address this problem,a multi-level l-diversity model based on level distance is proposed especially for numerical sensitive attribute.The main idea of the multi-level l-diversity model is that it divides numerical sensitive values into several levels at first,and then realizes sensitive attribute l-diversity based on these levels and level distance.Instantiations of the multi-level l-diversity model,such as multi-level distinct l-diversity,multi-level l-entropy diversity and multi-level recursive(c,l)-diversity,are introduced.The properties of the multi-level l-diversity model are also analyzed.Based on the properties,an l-incognito algorithm is designed to realize the multi-level l-diversity.Experiments compare the proposed model and the existing l-diversity model in terms of the diversity of anonymity tables.Experimental results show that the anonymity data generated by the l-incognito algorithm on the multi-level l-diversity model have higher sensitive attributes diversity than that on mono-level l-diversity model,so it can resist homogeneity attack and background knowledge attack effectively.
出处 《计算机研究与发展》 EI CSCD 北大核心 2011年第1期147-158,共12页 Journal of Computer Research and Development
基金 国家自然科学基金项目(60773094,60473055) 上海市曙光计划基金项目(07SG32) 上海市浦江人才计划基金项目(05PJ14030)
关键词 K-匿名 同质性攻击 背景知识攻击 l-多样性 数值型敏感属性 k-anonymity homogeneity attack background knowledge attack l-diversity numerical sensitive attribute
  • 相关文献

参考文献15

  • 1Samarati P, Sweeney L. Generalizing data to provide anonymity when disclosing information (abstract)[C] //Proc of the 17th ACM SIGMOD-SIGACT SIGART Syrup on the Principles of Database Systems. Piscataway, NJ: IEEE, 1998:188-3.88.
  • 2Samarati P. Protecting respondents' identities in microdata release [J]. IEEE Trans on Knowledge and Data Engineering. 2001, 13 (6) : 1010-1027.
  • 3Fung B C M, Wang K, Chen R, et al. Privacy-preserving data publishing: A survey on recent developments [J]. ACM Computing Surveys, 2010, 42(4): 1-53.
  • 4Machanavajjhala A, Gehrke J, Kifer D. L-diversity: Privacy beyond k-anonymity [C] //Proc of the 22nd Int Conf on Data Engineering. Piscataway, NJ: IEEE, 2006. 24-36.
  • 5Wong C R, Li J, Fu A, et al. (a, k)-anonymity: An enhanced k anonymity model for privacy preserving data publishing [C] //Proe of the 12th ACM SIGKDD Int Conf on Knowledge Discovery and Data Mining. New York: ACM, 2006, 754-759.
  • 6刘玉葆,黄志兰,傅慰慈,印鉴.基于有损分解的数据隐私保护方法[J].计算机研究与发展,2009,46(7):1217-1225. 被引量:21
  • 7Ye Xiaojun, Zhang Y W, Liu M. A personalized (a, k) anonymity model [C] //Proe of the 9th Int Conf on Web-Age Information Management. Berlin: Springer, 2008:341-348.
  • 8Xiao Xiaokui, Tao Yufen. Personalized privacy preservation [C] //Proc of the 25th ACM SIGMOD Int Conf on Management of Data. New York: ACM, 2006:229-240.
  • 9Li Zude, Zhan Guoqiang, Ye Xiaojun. Towards an antiinference(k,l) anonymity model with value assoeiation rules [C] //Proc of DEXA. Berlin: Springer, 2006:883-893.
  • 10Wu Min, Ye Xiaojun. Towards the diversity of sensitive attributes in k-anonymity [C] //Proc of the 2006 IEEE/WIC/ ACM Int Conf on Web Intelligence and Intelligent Agent Technology. Piscataway, NJ: IEEE, 2006:98-104.

二级参考文献30

  • 1葛伟平,汪卫,周皓峰,施伯乐.基于隐私保护的分类挖掘[J].计算机研究与发展,2006,43(1):39-45. 被引量:20
  • 2杨晓春,刘向宇,王斌,于戈.支持多约束的K-匿名化方法[J].软件学报,2006,17(5):1222-1231. 被引量:60
  • 3张鹏,童云海,唐世渭,杨冬青,马秀莉.一种有效的隐私保护关联规则挖掘方法[J].软件学报,2006,17(8):1764-1774. 被引量:53
  • 4Sweeney L.Achieving k-anonymity privacy protection using generalization and suppression[J].International Journal on Uncertainty,Fuzziness and Knowldege-Based Systems,2002,10(5):571-588.
  • 5Agrawal R,Srikant R.Privacy-preserving data mining[C]// Proc of SIGMOD 2000.New York:ACM.2000:439-450.
  • 6Wong R,Li J,Fu A,et al.(alpha,k)-anonymity,An enhanced k-anonymity model for privacy-preserving data publishing[C] aProc of KDD2006.New York:ACM,2006:754-759.
  • 7Aggrawal G,Feder T,Kenthapadi K,et al.Anomyrnizing tables[C] //Proc of ICDT 2005.Berlin:Springer,2005:236-258.
  • 8Machanavajjhala A,Gehrke J.Kifer D.1-diversity:Privacy beyond k-anonymity[C] //Proc of ICDE 2006.Los Alamitoa,CA:IEEE Computer Society,2006:24-35.
  • 9Lefevre K,Dewht D J.Ramakrishnan R.Incognhn: Efficient full domain k anonymity[C] //Proc of SIGMOD 2005.New York:ACM.2005:49-60.
  • 10Fung BC M,Wang K,Yu P S.Top-down specialization for information and privacy preservation[C] //Proc of ICDE 2005.Los Alamitos.CA:IEEE Computer Society.2005:205-216.

共引文献73

同被引文献196

引证文献23

二级引证文献126

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部