期刊文献+

弹性力学问题解唯一的边界积分方程 被引量:3

Boundary Integral Equations of Unique Solutions in Elasticity
下载PDF
导出
摘要 从积分方程式出发,应用基本解的特性分析,说明在力边值问题中,位移边界积分方程和面力边界积分方程的位移解不唯一· 提出了位移解唯一的条件,建立了唯一解的位移边界积分方程和面力边界积分方程· 实例计算结果表明唯一解的边界积分方程是有效的· The properties of the fundamental solution are derived in linear elastostatics. These properties are used to show that the conventional displacement and traction boundary integral equations yield non_unique displacement solutions in a traction boundary value problem. The condition for the existence of unique displacement solutions is proposed for the traction boundary value problem. The degrees of freedom of the displacement solution are removed by the condition to obtain the boundary integral equations of unique solutions for the traction boundary value problems. Numerical example is presented to demonstrate the accuracy and efficiency of the present equations.
出处 《应用数学和力学》 EI CSCD 北大核心 1999年第10期1051-1056,共6页 Applied Mathematics and Mechanics
基金 山东省自然科学基金
关键词 边界积分方程 边界元法 弹性力学 boundary integral equation boundary element method elasticity
  • 相关文献

参考文献4

二级参考文献8

共引文献4

同被引文献21

  • 1胡海昌,丁皓江,何文军.弹性力学平面问题的等价的边界积分方程[J].中国科学(A辑),1996,26(11):1009-1014. 被引量:5
  • 2周慎杰.边界轮廓法的理论与应用研究[M].同济大学工学博士学位论文,1999..
  • 3周慎杰 曹志远 等.热弹性问题的边界轮廓法[J].北方工业大学学报,1998,10:93-96.
  • 4孙树勋.弹性力学教程[M].济南:山东大学出版社,1996..
  • 5Rizzo F J. An integral equation approach to boundary value problems of classical elastostatics[J]. Qly Appl Math, 1967,25:83-95.
  • 6Lutz E D. Syetematic derivation of contour integration formulae for Laplace and elastostatic gradient[J]. BIEs Comput Mech,1994,14:339-353.
  • 7Nagarajan A, Lutz E D, Mukherjee S. A novel boundary element method for linear elasticity with no numerical integration for 2-D and line integrals for 3-D problems[J]. ASME J Appl Mech, 1994,61:264-269.
  • 8Nagarajan A, Mukherjee S, Lutz ED. The boundary contour method for three dimensional linear elasticity[J]. ASME J Appl Mech, 1996,63:278-286.
  • 9Chen S Y, Tang W X, Zhou S J, Leng X, Zheng W. Evaluation of J integrals and stress intensity factors in a two dimensional quadratic boundary contour method [J]. Commun Numer Meth Engng,1999,15: 91-100.
  • 10Blandford G E, Ingraffea A R, Liggett J A. Two dimensional stress intensity factor computations using the boundary element method [J]. Int J Numer Meth Engng , 1981,17 :387-404.

引证文献3

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部