期刊文献+

海洋产电菌Shewanella marisflavi EP1的脱色特性 被引量:8

Decolorization of dyes by a current-producing bacterium Shewanella marisflavi EP1 isolated from sea sediments
原文传递
导出
摘要 以一株新筛选得到的海洋产电菌Shewanella marisflavi EP1作为实验材料,研究了该菌株关于偶氮、蒽醌、三苯基甲烷等染料的脱色能力及脱色机制。结果表明,该菌株对这些染料均具有较好的脱色能力,最高脱色容量达到925 mg染料/(g细胞干重.d)。EP1能利用葡萄糖、蔗糖、木糖、乳酸、甲酸、柠檬酸等多种碳源将单偶氮染料丽春红2R脱色。脱色的pH、温度和NaCl浓度范围分别是:pH 6-10、15°C-40°C、0-8%。最优脱色条件:乳酸,pH 8、35°C、1%-2%NaCl,10 h内脱色率高达99.95%。分光光谱结果表明,在0-8%NaCl浓度范围内EP1脱色机制为降解脱色。 In this study,we investigated a new current-producing strain,Shewanella marisflavi EP1 isolated from costal sediments of Xiamen,its decolorization capability and mechanism of several types of dyes such as azo,anthraquinone and triphenyl methane.The results indicated that these dyes could be decolorized efficiently and the maximum capacity was 925 mg/(g cell dry weight·d) of Malachite Green.Strain EP1 could utilize various kinds of carbon sources,such as glucose,sucrose,xylose,lactate,formate and citrate for the decolorization of Xylidine Ponceau 2R.EP1 was active for decolorization in wide ranges of pH(6?10),temperture(15 °C?40 °C),and NaCl concentations(0?8%).The optimal conditions were pH 8.0,30 °C,1%?2% NaCl and lactate as carbon source,with a highest decolorization rate of 99.95% within 10 h.UV-vis absorption spectra demonstrated that the mechanism of the azo dye was degradation in the range of 0?8% NaCl.
出处 《微生物学通报》 CAS CSCD 北大核心 2011年第1期2-7,共6页 Microbiology China
基金 中国大洋协会项目(No.DYXM-115-02-2-15) 国家海洋局海洋生物遗传重点实验室开放研究基金资助项目(No.HY200904)
关键词 产电菌 SHEWANELLA marisflavi EP1 偶氮染料 生物脱色 Current-producing bacteria Shewanella marisflavi EP1 Azo dye Biodecolorization
  • 相关文献

参考文献15

  • 1Lovley DR. Extracellular electron transfer: wires, capacitors, iron lungs, and more[J]. Geobiology, 2008, 6(3): 225-231.
  • 2Logan BE. Exoelectrogenic bacteria that power microbial fuel cells[J]. Nat Rev Microbiol, 2009, 7(5): 375-381.
  • 3Li Z J, Zhang simultaneous XW, Lin J, et al. Azo dye treatment with electricity production in an anaerobic-aerobic sequential reactor and microbial fuel cell coupled system[J]. Bioresour Technol, 2010, 101(12): 4440-4445.
  • 4Sun J, Hu YY, Bi Z, et al. Simultaneous decolorization of azo dye and bioelectricity generation using a microfiltration membrane air-cathode single-chamber microbial fuel cell[J]. Bioresour Technol, 2009, 100(13): 3185-3192.
  • 5Chen BY, Zhang MM, Chang CT, et al. Assessment upon azo dye decolorization and bioelectricity generation by Proteus hauseri[J]. Bioresour Technol, 2010, 101(12): 4737-4741.
  • 6Pearce CI, Guthrie JT, Lloyd JR. Reduction of pigment dispersions by Shewanella strain J18 143[J]. Dyes Pigments, 2008, 76(3): 696-705.
  • 7Coates JD, Phillips E J, Lonergan D J, et al. Isolation of Geobacter species from diverse sedimentary environments[J]. Appl Environ Microbiol, 1996, 62(5): 1531-1536.
  • 8Holmes DE, Nevin KP, Lovley DR. Comparison of 16S rRNA, nifD, recA, gyrB, rpoB andfusA genes within the family Geobacteraceae fam. nov.[J]. Int J Syst Evol Microbiol, 2004, 54(5): 1591-1599.
  • 9Wu J, Kim KS, Sung NC, et al. Isolation and characterization of Shewanella oneidensis WL-7 capable of decolorizing azo dye Reactive Black 5[J]. J Gen Appl Microbiol, 2009, 55(1): 51-55.
  • 10Kim HJ, Hyun MS, Chang IS, et al. A microbial fuel cell type lactate biosensor using a metal-reducing bacterium, Shewanella putrefaciens[J]. J Microbiol Biotechnol, 1999, 9(3): 365-367.

二级参考文献27

  • 1许玫英,郭俊,钟小燕,曹渭,孙国萍,岑英华.一个降解染料的希瓦氏菌新种——中国希瓦氏菌[J].微生物学报,2004,44(5):561-566. 被引量:26
  • 2黄霞,梁鹏,曹效鑫,范明志.无介体微生物燃料电池的研究进展[J].中国给水排水,2007,23(4):1-6. 被引量:46
  • 3Logan BE, Regan JM. Electricity-producing bacterial communities in microbial fuel cells. Trends Microbiol, 2006, 14(12): 512-518.
  • 4Wei D, Zhang X. Current Production by a Deep-Sea Strain Shewanella sp. DS1. Current Microbiology, 2007, 55(6): 497-500.
  • 5Bond DR, Lovley DR. Electricity production by Geobacter sulfurreducens attached to electrodes. Applied and Environmental Microbiology, 2003, 69(3): 1548-1555.
  • 6Holmes DE, Nevin KP, Lovley DR. Comparison of 16S rRNA, nifD, recA, gyrB, rpoB and fusA genes within the family Geobacteraceae ram. nov.. Soc General Microbiol, 2004, 54(5): 1591-1599.
  • 7Zuo Y, Xing D, Regan JM, et al. Isolation of the exoelectrogenic bacterium ochrobactrum anthropi YZ-1 by using a U-tube microbial fuel cell. Applied and Environmental Microbiology, 2008, 74(10): 3130-3137.
  • 8Watanabe K, Yamamoto S, Hino S, et al. Population dynamics of phenol-degrading bacteria in activated sludge determined by gyrB-targeted quantitative PCR. Applied and Environmental Microbiology, 1998, 64(4): 1203-1209.
  • 9Logan BE. Exoelectrogenic bacteria that power microbial fuel cells. Nature Reviews Microbiology, 2009, 7(5): 375-381.
  • 10Adachi T, Mizuuchi M, Robinson EA, et al. DNA sequence of the E. coli gyrB gene: application of a new sequencing strategy. Nucleic acids research, 1987, 15(2): 771-785.

共引文献32

同被引文献105

引证文献8

二级引证文献33

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部