摘要
文中讨论了部分线性模型 Yi = X Ti U+ g ( Ti) + Xi,i= 1,2,…,n 中参数 U估计的性质,这里g 是未知的 H氹lder 连续函数, Xi 是随机误差,( Xi, Ti),i= 1,2,…,n 是已知的设计点。在某些条件下,证明了 U的最小二乘估计和最大似然估计是 Bahadur 渐近有效估计。
In this paper, the author discusses Bahadur asmptotic efficiency on the estimation of β , which is an unknown parameter vector in the partly linear model Y i=X T iβ+g(T i)+ε i. i=1,2,…,n , where g is an unkown Holder continuous function. ε i is a random error, {(X i,T i), i=1,2,…,n} is a sequence of known design points. Under some conditions, it is proved that the PLSE and PMLE ML of β is Bahadur asymptotic efficiency.
出处
《工程数学学报》
CSCD
北大核心
1999年第3期30-36,114,共8页
Chinese Journal of Engineering Mathematics