期刊文献+

Alignment空间及其虚拟符号运算 被引量:2

Alignment Space and Its Virtual Symbol Operation
下载PDF
导出
摘要 本文提出Alignment空间中虚拟符号运算的概念,并且给出一系列关于虚拟符号运算处理序列的性质. In this paper, we introduce the virtual symbol operation theory in the Alignment space. And we give a series of properties related to the virtual symbol operation in sequences.
作者 卢国祥
出处 《应用数学》 CSCD 北大核心 2011年第1期143-149,共7页 Mathematica Applicata
基金 中南财经政法大学引进人才科研启动金(31140911216)
关键词 Alignment空间 虚拟符号运算 保距算子 微调算子 Alignment space Virtual symbol operation Isometric operator Microadapted operator
  • 相关文献

参考文献10

  • 1SMITH T F,WATERMAN M S, FITCH W M. Comparative biosequence metrics[J]. Molecular Evolution, 1981,18 : 38-46.
  • 2MOUNT D W. Bioinformatics-Seqwuence and Genome Analysis[M]. New York: Cold Spring Harbor Laboratory Press, 2001.
  • 3NAVARRO G. A guided tour to approximate string matehing[J]. ACM Compuing Surveys, 2001,33 (1): 31-38.
  • 4DIGGAVI S N,GROSSGLAUSER M. On Transmission Over Deletion Channels[C3//Allerton Conference. Monticello, Illinois, 2001.
  • 5KLEIN A. On perfect deletion-eorrecting codes[J]. J. Comb. Des. ,2004,12 : 72-77.
  • 6WANG Jianmin. Some combinatorial constructions for optimal perfect deletion-correcting codes[J]. Des. Codes Cryptogr. , 2008,48 : 331-337.
  • 7SHEN Shiyi,WANG Kui, HU Gang,et al. On the alignment space and its applications[C]//Proceedings of 2006 1EEE Information Theory Workshop(ITW'06). Chengdu: 2006,165-169.
  • 8沈世镒,张拓,王奎.一般罚分(或得分)矩阵下的SPA算法[J].应用数学,2007,20(3):627-632. 被引量:1
  • 9卢国祥,沈世镒.由一般拓扑度量空间所产生的Alignment空间[J].工程数学学报,2008,25(6):1097-1101. 被引量:5
  • 10TORRES A,CABADA A, NIETO J J. An exact formula for the number of alignment s between two DNA sequences[J]. DNA Sequence,2003,14(6):427-430.

二级参考文献13

  • 1Levenshtein V I. Binary coded capable of correcting deletion, insertions and reversals(in Russian)[J]. Doklady Akademii Nauk SSSR, 1965, 163(4): 845-848 (English) Soviet Physics - Doklady, 1966, 10(8): 707-710
  • 2Hollmann H D L. A relation between Levenshtein-type distances and insertion-and-deletion correcting capabilities of codes[J]. IEEE Transactions on Information Theory, 1993, 39(4): 1424-1427
  • 3Bours P A H. Constructiong of fixed-length insertion/deletion correcting runlength-limited codes[J]. IEEE Transactions on Information Theory, 1994, 40(6): 1841-1856
  • 4Navarro G. A guided tour to appraximate string matching[J]. ACM Compuing Surveys, 2001, 33(1): 31-88
  • 5Mount D W. Bioinformatics-Seqwuence and Genome Analysis[M]. New York: Cold Spring Harbor Laboratory Press, 2001
  • 6Needleman S B, Wunsch C S. A general method applicable to the search for similarities in the amino acid sequence of two proteins[J]. Journal of Molecular Biology, 1970, 48(3): 443-453
  • 7Sellers P H. On the theory and computation of evolutionary distances[J]. SIAM Journal on Applied Mathematics, 1974, 26(4): 787-793
  • 8Smith T F, Waterman M S, Fitch W M. Comparative biosequence metrics[J]. Journal of Molecular Evolution, 1981, 18:38-46
  • 9Shen Shi-yi, et al. On the alignment space[C]//Proceedings of the 2005 27th Annual International Conference of the Engineering in Medicine and Biology Society, IEEE-EMBS, 2005, 2005:244-247
  • 10Shen Shi-yi,Yang Jun,Yao Wen-huang,Pei-Ing Hwang.Super Pairwise Alignment (SPA):an efficient approach to global alignment for homologous sequences[J].J.Comput.Biol,2002,9(3):477--486.

共引文献4

同被引文献12

  • 1沈世镒,张拓.DNA计算中突变误差的纠正[J].计算机工程与应用,2006,42(7):4-6. 被引量:1
  • 2SHEN Shiyi;WANG Kui;HU Gang.On the alignment space[A]上海,2005244-247.
  • 3WANG Jianmin. Some combinatorial constructions for optimal perfect deletion-correcting codes[J].Designs Codes and Cryptography,2008,(3):331-347.doi:10.1007/s10623-008-9212-8.
  • 4Hyun K K,Joon Y L,Dong Y O. Optimal single deletion correcting code of length four over an alphabet of even size[J].IEEE Transactions on Information theory,2010,(07):3217-3220.
  • 5Mount D W. Bioinformatics:Sequence and Genome Analysis[M].New York:cold Spring Harbor Laboratory Press,2004.
  • 6Heath L S,Ramakrishnan N. Problem Solving Handbook in Computational Biology and Bioinformatics[M].New York:springer-verlag,2011.
  • 7Phan V,Garzon M H. On codeword design in metric DNA spaces[J].Natural Computing,2009,(03):571-588.doi:10.1002/sim.3605.
  • 8Stanley R P. Enumerative Combinatorics[M].Cambridge:Cambridge University Press,1997.
  • 9卢国祥,沈世镒.由一般拓扑度量空间所产生的Alignment空间[J].工程数学学报,2008,25(6):1097-1101. 被引量:5
  • 10卢国祥.利用Alignment空间理论分析蛋白质的结构[J].计算机工程与应用,2011,47(23):54-56. 被引量:2

引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部