期刊文献+

关于一类带有非线性边界条件的拟线性椭圆方程(英文)

On a Class of Quasilinear Elliptic Equations with Nonlinear Boundary Condition
下载PDF
导出
摘要 本文研究了一类带有非线性边界条件的拟线性椭圆方程.在比常用的经典条件弱的假设条件下,得到该方程所对应的能量泛函存在有界Palais-Smale序列.然后,利用山路引理,得到该方程非平凡解的存在性.最后,给出一个例子,说明所给的条件比经典条件弱. In this paper, we investigate a class of quasilinear elliptic equations with nonlinear boundary condition. The existence of bounded Palais-Smale sequences for the corresponding functional of the equation is obtained under hypotheses weaker than those commonly used in the literature. Then, by applying Mountain Pass Lemma, the existence of nontrivial solution is confirmed. Furthermore, we give an example which illustrates that the condition we give is more general than the superquadratic growth condition.
出处 《应用数学》 CSCD 北大核心 2011年第1期181-186,共6页 Mathematica Applicata
基金 Supported by Shanghai Leading Academic Discipline Project (S30501)
关键词 有界Palais—Smale序列 非线性边界条件 山路引理 非平凡解 Bounded Palais-Smale sequence Nonlinear boundary condition Mountain Pass Lemraa Nontrivial solution
  • 相关文献

参考文献10

  • 1DIAZ J I. Nonlinear Partial Differential Equations and Free Boundaries, Elliptic Equations[M]. Boston: Pitman Adv. Publ., 1986.
  • 2BONDER J F,ROSSI J D. Asymptotic behavior of the best Sobolev trace constant in expanding and contraeting domains[J]. Comm. Pure. Appl. , 2002,1 (3):359-378.
  • 3BONDER J F, MARTNEZ S, ROSSI J D. The behavior of the best Sobolev trace constant and extremals in thin domains[J]. J. Differential Equations, 2004,198 ( 1 ) : 129-148.
  • 4PFLUGER K. Existence and multiplicity of solutions to a p -Laplacian equation with nonlinear boundary condition, Electron[J]. J. Differential Equations, 1998 (10) : 1-13.
  • 5CFRSTEA F C St,RADULESCU V. Existence and non-existence results for a quasilinear problem with nonlinear boundary conditions[J]. J. Math. Anal. , Appl. , 2000,244 : 169-183.
  • 6BONDER J F,ROSSI J D. Existence results for the p -Laplacian with nonlinear boundary conditions[J]. J. Math. Anal. Appl. ,2001,263(1) : 195-223.
  • 7AMBROSETTI A,RABINOWITZ P H. Dual variational methods in critical point theory and applications [J~. J. Funct. Anal. , 1973,14 : 349-381.
  • 8JEANJEAN L. On the existence of bounded Palais-Smale sequences and application to a Landesman-Lazer type problem set on RN [J]. Proc. Roy. Soc. Edinburgh, 1999,129A: 787-809.
  • 9RABIER P J. Bounded Palais-Smale sequences for functionals with a mountain pass geometry[J]. Arch. Math. ,2007,88 : 143-152.
  • 10FERNANDEZ B J,ROSSI J D. Existence results for the p -Laplacian with nonlinear boundary conditions [J]. J. Math. Anal. Appl., 2001,263(1): 195-223.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部