期刊文献+

随机扰动下的库存投资决策模型(英文)

Inventory Investment Decision Model with Stochastic Disturbance
下载PDF
导出
摘要 本文讨论的是库存投资的最优决策问题.不同于确定性q理论,对于引入了市场不确定性扰动的库存控制系统,文章建立了库存投资随机优化决策模型.从市场利率波动的角度对库存决策模型进行分析,得出的结论是:小的市场利率的扰动能够提高企业折现利润的预期,进而导致公司库存投资的上升. In this paper,the problem of decision-making of inventory investment is discussed. Different from the classical deterministic q model.stochastic optimal decision-making models are established in dealing with inventory decision-making when market indeterminate disturbance is introduced into inventory control system. Then we look at the problem from an indeterminate interest rate point of view and derive the conclusion that small indeterminacy of market interest rate will enhance expectancy of firm's profit and bring consequently increased inventory investment.
作者 欧阳小迅
出处 《应用数学》 CSCD 北大核心 2011年第1期204-208,共5页 Mathematica Applicata
基金 Supported by Science Research Foundation of Hunan Provincial Education Department(10C0852)
关键词 库存控制 投资决策 随机扰动 ITO SDE Inventory control Investment decision Stochastic disturbance Ito SDE
  • 相关文献

参考文献1

二级参考文献10

  • 1Sherbrooke C C. Optimal Inventory Modeling of Systems(2^nd edition)[M]. Boston: Kluwer Academic Publishers, 2004.
  • 2Sobel M J. Fill rates of single-stage and multistage supply systems[J]. Manufacturing & Service Operations Management, 2004,6: 41-52.
  • 3Browne S,Zipkin P H. Inventory models with continuous stochastic demands[J]. The Annals of Applied Probability, 1991, (1) : 419-435.
  • 4Axsater S. A new decision rule for lateral transshipments in inventory systems[J]. Management Science, 2003,49 : 1168-1179.
  • 5Marklund J. Centralized inventory control in a two-level distribution system with Poisson demand[J]. Naval Research Logistics, 2002,49 : 798-822.
  • 6Turnovsky S J. Method of Macroeconomic Dynamics[M]. Cambridge Massachusetts: The MIT Press, 2000.
  • 7Marcelo Biancoi. Private information, growth, and asset prices with stochastic disturbances[J]. International Review of Economic & Finance,2003,12(1):1-2.
  • 8Kataoka H, Ken-ichi Semba. The neoclassical investment model and a new conversion law[J]. Journal of Economics, 2002, (75): 137-160.
  • 9Fleming W H, Sheu S J. Risk-Sensitive control and an optimal investment model[J]. Mathematical Finance, 2000,10(2) : 197-213.
  • 10Calcagnini G,Saltari E. Real and financial uncertainty and investment decisions[J]. Journal of Macroeconomics, 2000, (22):491-514.

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部