期刊文献+

分数双重非线性相关器特性研究 被引量:1

Properties of the Fractional Dual Nonlinear Correlator
原文传递
导出
摘要 将分数傅里叶变换引入到双重非线性相关方法中,通过对参考图像和目标图像分数傅里叶变换谱的双重非线性操作实现非线性分数相关。该方法利用非线性参数以及分数阶控制目标的形状和纹理的权重,从而实现目标相关识别的调控。该非线性分数相关系统由一个光电混合装置实现,数值仿真表明,这种光学图像识别系统的优点在于对目标的形状失真和纹理改变的分辨能力是可调节的,并且可改善相关峰的性能,具有很强的抗噪声能力。 The fractional Foruier transform(FrFT) is introduced into the dual nonlinear optical correlation.The dual nonlinear fractional correlation can be realized by the nonlinear operations on the FrFT of the reference images and the target ones.The proposed scheme gives different weights to different shapes and textures by nonlinear parameters and fractional orders.Therefore the properties of target recognition can be controlled.The dual nonlinear fractional correlator can be implemented by an opto-electronical setup.The simulation results show that the most remarkable characteristic of this system is that it has the variable and adjustable discrimination capability to shape changes and texture distortions of the objects.In addition it can improve the performances of the correlation output peak and it has better rubustness to noise.
出处 《光学学报》 EI CAS CSCD 北大核心 2011年第1期94-100,共7页 Acta Optica Sinica
基金 国家自然科学基金(10974039)资助课题
关键词 图像处理 分数双重非线性相关 分数傅里叶变换 可调节的分辨能力 image processing fractional dual nonlinear correlation fractional Fourier transform adjustable discrimination capability
  • 相关文献

参考文献16

  • 1B. Javidi. Nonlinear joint power spectrum based optical correlation[J].Appl. Opt., 1989, 28(12): 2358-2367.
  • 2A. Vander Lugt. Signal detection by complex spatial filtering [J].IEEE Trans. Info. Theory, 1964, IT-10: 139-145.
  • 3B. Javidi, C. Kuo. Joint transform image correlation using a binary spatial light modulator at the Fourier plane [J].Appl. Opt., 1988, 27(4): 663-665.
  • 4M. S. Alam, O. Perez, M. A. Karim. Preprocessed multi-object joint transform correlation [J].Appl. Opt., 1993, 32(17): 3102-3107.
  • 5邓绍更,刘立人,郎海涛,刘德安,郭袁俊.空变菲涅耳联合变换相关器[J].光学学报,2006,26(4):621-624. 被引量:5
  • 6D. Cheng, P. Andres, F. T. S. Yu. Removal of intra-class associations in joint transform power spectrum [J].Opt. Commun., 1993, 99(1): 7-12.
  • 7陈怀新,陈祯培,刘馨.基于双二次微分的联合变换相关识别[J].光学学报,1998,18(10):1342-1348. 被引量:1
  • 8B. Zhu, S. Liu, L. Han et al.. Nolinear joint fractional transform correlator [J].Appl. Opt., 2001, 40(17): 2836-2843.
  • 9L. P. Yarslavsky, E. Marom. Nolinearity optimization in nonlinear joint transform correlators [J].Appl. Opt., 1997, 36(20): 4816-4822.
  • 10E. Pérez, M. S. Millán, K. Chalasinska-Macukow. Pattern recognition with variable discrimination capability by dual non-linear optical correlation [J].Opt. Commun., 1999, 161(1-3): 115-122.

二级参考文献15

  • 1华建文,刘立人,李国强.研究物体分数傅里叶变换的简单方法[J].中国激光,1997,24(5):435-438. 被引量:11
  • 2Zhong S,Appl Opt,1997年,36卷,8期,1776页
  • 3Tanone A,Appl Opt,1992年,31卷,23期,4816页
  • 4Javidi B,Appl Opt,1991年,30卷,29期,4234页
  • 5Javidi B,Opt Eng,1991年,31卷,5期,888页
  • 6Yu F T S,Appl Opt,1989年,28卷,15期,2988页
  • 7Jeffrey A. Davis, Don M. Cottrell et al.. Space-variant Fresnel transform optical correlator[J]. Appl. Opt., 1992, 31(32)6889-6893
  • 8Jeffrey A. Davis, Rod P. Tiangco, Don M. Cottrelletal. Fourplane space-variant Fresnel-transform optical processor with a random phase encoder [J]. Appl. Opt., 1996, 35 (20):3819-3828
  • 9D. Mendlovic, H. M. Ozaktas. Fractional Fourier transform and their optical implementation[J]. J. Opt. Soc. Am. (A),1993, 10(9): 1875-1880
  • 10A. W. Lohmann. Image rotation, Wigner rotation, and the fractional Fourier transform[J]. J. Opt. Soc. Am. (A), 1993,10(10) : 2181-2186

共引文献4

同被引文献25

  • 1彭翔,汤红乔,田劲东.双随机相位编码光学加密系统的唯密文攻击[J].物理学报,2007,56(5):2629-2636. 被引量:42
  • 2Wan Qin, Xiang Peng. Asymmetric cryptosystem based on phase-truncaled Fourier transforms [J]. Opt. Lett., 2(/10. 35(2) = 118-120.
  • 3Nanrun Zhou, Yixian Wang, Lihua Gong et al.. Novel single channel color image encryption algorithm based on chaos and fractional Fourier transform [J]. Opt. GmTmun.. 2011, 284 (12): 2789-2796.
  • 4Xiaogang Wang, Daomu Zhao. Security enhancement of a phase- truncation based image encryption algorithm [J]. Appl. Opt. , 2011, 50(36): 6645-6651.
  • 5Yan Zhang, Bo Wang. ()ptical image encryption based on interference [J]. Opt. Lett., 2008, 33(21): 2443-2445.
  • 6Yujing Han, Yunhai Zhang. Optical image encryption based on two beams' interference [J]. Opt. Cmmun. , 2010, 2B3 (9) : 1690-1692.
  • 7Philippe Refregier, Bahram Javidi. Optical image eneryption based on input plane and Fourier plane random encoding [J]. Opt. Itt., 1995, 20(7): 767-769.
  • 8Bor Wang, Ching-cherng Sun, Wei chia Suet al.. Shift-tolerance property of an optical double-random phase encoding encryption system [J]. Appl. Opt,, 2000, 39(26): 4788-4793.
  • 9Takanori Nomura, Bahram Javidi. Optical encryption using a ]oint trans[orm corre[ator architecture [J]. Opt. Eng., 2000, .39(8) : 2031-2035.
  • 10Wan Qino Xiang Peng, Xiangfeng Meng. Cryptanalysis of optical encryption schemes based on joint transform correlator architecture[J]. Opt. Eng.,2011, 50(2): 028201.

引证文献1

二级引证文献17

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部