期刊文献+

高温鼓泡床内气固两相流动的数值模拟 被引量:1

Numerical Simulation of Gas-Solid Flow in Bubbling Bed at High Temperature
下载PDF
导出
摘要 针对高温鼓泡床内的气固两相流动,在热态鼓泡床中试装置的基础上建立了鼓泡床物理模型,采用团聚曳力模型对高温鼓泡床内气固两相流动进行模拟研究。模拟结果表明,当颗粒当量直径为235μm时,模拟得到的床层密度与实验值吻合较好;随温度的升高,气固曳力增大,使得床层密度有所降低;对颗粒体积分数的概率分布及压力脉动方差的分析表明,随温度的升高,固相中的颗粒减少,而气相中的颗粒增多,同时气泡尺寸有所增大,床层气固两相运动更加剧烈。 Gas-solid flow behavior in a bubbling bed at high temperature was simulated by means of the computational fluid dynamics. The effect of the different equivalent diameters of the solids on the flow was investigated to modify the proposed drag model. The simulated bed densities were in good agreement with the experimental data at the equivalent diameter 235 μm. With rise of temperature, the drag force between gas and solid phases strengthened, which led to reduction of the bed density. Analysis of the probability density distribution of the solid volume fraction showed that few particles were in the dense phase and many particles were entrained into the dilute phase at high temperature. The pressure fluctuation intensified with rise of the temperature, which indicated formation of the bigger bubbles and more volatile gas-solid flow.
出处 《石油化工》 CAS CSCD 北大核心 2011年第1期55-59,共5页 Petrochemical Technology
基金 国家杰出青年基金项目(20725620)
关键词 鼓泡床 气固流动 曳力模型 数值模拟 bubbling bed gas-solid flow drag model numerical simulation
  • 相关文献

参考文献3

二级参考文献71

  • 1晁忠喜,孙国刚,时铭显.催化裂化沉降器空间内油气停留时间的分布[J].石油学报(石油加工),2005,21(4):7-13. 被引量:16
  • 2孙凤侠,卢春喜,时铭显.催化裂化沉降器旋流快分器内气体停留时间分布的数值模拟研究[J].中国石油大学学报(自然科学版),2006,30(6):77-82. 被引量:13
  • 3[8]Grace,J.R.(1986).Contacting modes and behavior classification of gas-solid and two-phase suspensions.Can.J.Chem.Eng.,64,353.
  • 4[9]Hamaker,H.C.(1937).The London-van der Waals attraction between spherical particles.Physica Ⅳ,10,1058.
  • 5[10]Knowlton,T.M.(1992).Pressure and temperature effects in fluid-particle system.In Potter,O.E.& Nicklin,D.J.(Eds.),Fluidization Ⅶ,Engineering Foundation (pp.27-46).New York.
  • 6[11]Lettieri,P.,Brandani,S.,Yates,J.G.& Newton,D.(2001).A generalization of the Foscolo and Gibilaro particle-bed model to predict the fluid bed stability of some fresh FCC catalysts at elevated temperatures.Chem.Eng.Sci.,56,5401-5412.
  • 7[12]Lettieri,P.,Yates,J.G.& Newton,D.(2000).The influence of interparticle forces on the fluidization behaviour of some industrial materials at high temperature.Powder Technol.,110,117-127.
  • 8[13]Massimilla,L.& Donsi,D.(1976).Cohesive force between particles of fluid-bed catalysts.Powder Technol.,15(2),253-260.
  • 9[14]Molerus,O.(1982).Interpretation of Geldart type A,B,C and D powder by taking into account interparticle cohesion forces.Powder Technol.,33,81-87.
  • 10[15]Mutsers,S.M.P.& Rietema,K.(1977).The effect of interparticle forces on the expansion of a homogeneous gas-fluidized bed.Powder Technol.,18,239-248.

共引文献10

同被引文献4

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部