期刊文献+

一种基于纹理和颜色的粒子滤波目标跟踪方法 被引量:2

Particle Filter Object Tracking Based on Texture and Color
下载PDF
导出
摘要 针对基于颜色的粒子滤波跟踪方法在复杂背景下会导致跟踪失败的问题,提出了一种基于局部二值模式纹理和颜色特征的粒子滤波目标跟踪方法。颜色直方图是对目标在彩色图像中的全局描述,而局部二值模式纹理包含了灰度图像中局部邻近区域的纹理信息,两者可以互为补充。因此同时用颜色直方图和局部二值模式纹理直方图描述目标,在粒子滤波框架下将目标颜色和局部二值模式纹理有机结合起来。实验结果表明,该算法不仅提高了跟踪精度,而且具有较强的稳健性。 Object tracking based on color feature often fails in a complex background. To deal with this problem, a particle filter object tracking approach is proposed in this paper based on local binary pattern and color feature. Color histogram is the global description of targets in color image, while local binary pattern texture contains information of neighbor region texture in gray image. These two features may complement each other, thus target is represented by both histogram of color and local binary pattern which are combined under the frame of particle filter. The experimental results show that the proposed method effectively improves the accuracy and robustness of tracking.
出处 《电视技术》 北大核心 2011年第3期97-100,共4页 Video Engineering
基金 浙江省教育厅科研项目(Y200803695Y200803228) 宁波市自然科学基金项目(2009A610090)
关键词 目标跟踪 粒子滤波 局部二值模式 object tracking particle filter local binary pattern
  • 相关文献

参考文献14

  • 1侯志强,韩崇昭.视觉跟踪技术综述[J].自动化学报,2006,32(4):603-617. 被引量:255
  • 2TANG S, LIANG K, LIM M,et al. Colour-based object tracking in surveillance application [EB/OL].[2010-03-25].http ://www.iaeng.org/ publication/IMECS2009/IMECS2009_pp459-464.pdf.
  • 3HAMER H,SCHINDLER K,KOLLERMEIER E,et al. Tracking a hand manipulating an object[EB/OL].[2010-03-25].http ://www.3d-coform. eu/papers/trackingahand.pdf.
  • 4YILMAZ A,JAVED O,SHAH M. Object tracking:a survey[J].ACM Computing Surveys, 2006,38 (4) : 1-45.
  • 5ISARD M,BLAKE A. Condensation-conditional density propagation for visual tacking[J].Computer Vision, 1998,29 (1) : 5-28.
  • 6ISARD M,BLAKE A. Condensation: unifying low-level and high- level tracking in a stochastic framework[EB/OL].[2010-03-25].http:// www.springerlink.com/content/g05d61 nfx3j klu I q/.
  • 7NUMMIARO K,KOLLERMEIER E,VAN G L J. An adaptive color- based particle filter [J].Image and Vision Computing,2003,21 (1): 99-110.
  • 8HUE C,LECADRE J P,PEREZ P.Tracking multiple objects with panicle filtering [J].IEEE Transactions on Aerospace and Electronic Systems, 2002,38 ( 3 ) : 791-812.
  • 9张涛,费树岷,李晓东,路红.基于色彩相关直方图的粒子滤波跟踪算法[J].系统仿真学报,2009,21(17):5423-5426. 被引量:3
  • 10李培华.一种新颖的基于颜色信息的粒子滤波器跟踪算法[J].计算机学报,2009,32(12):2454-2463. 被引量:21

二级参考文献31

  • 1王东升,李在铭.空域视频场景监视中运动对象的实时检测与跟踪技术[J].信号处理,2005,21(2):195-198. 被引量:5
  • 2侯志强,韩崇昭.基于像素灰度归类的背景重构算法[J].软件学报,2005,16(9):1568-1576. 被引量:97
  • 3李培华.一种改进的Mean Shift跟踪算法[J].自动化学报,2007,33(4):347-354. 被引量:53
  • 4Ristic B, Arulampalam S, Gordon N. Beyond the Kalman Filter: Particle Filters for Tracking Applications [M]. USA: Artech House, 2004.
  • 5Kalman R E. A new approach to linear filtering and prediction problems [J]. Transaction of the ASME Journal of Basic Engineering (S0021-9223), 1960, 82(Series D): 35-45.
  • 6Welch G, Bishop G An introduction to the Kalman Fitler [R]// Technical Report University of North Carolina at Chapel Hill, TR 95-041, July 24, 2006: 2-15.
  • 7Salmond D, Gordon N, Smith A. A novel approach to nonlinear/non- Gaussian Bayesian state estimation [J]. IEEE Proceedings on Radar, Sonar and Navigation (S0956-375X), 1993, 40(2): 107-113.
  • 8Arulampalam M, Maskell S, Gordon N, Clapp T. A tutorial on particle filters for online nonlinear/non-Gaussian Bayesian tracking [J]. IEEE Transactions on Signal Processing (S1053-587X), 2002, 50(2): 174-188.
  • 9Doucet A, Godsill S, Andrieu C. On sequential Monte Carlo sampling methods for Bayesian filtering [J]. Statistics and Computing (S0960-3174), 2000, 10(3): 197-208.
  • 10Isard M, Blake A. Condensation--conditional density propagation for visual tracking [J]. International Journal of Computer Vision (S0920-5691), 1998, 28(1): 5-28.

共引文献273

同被引文献16

  • 1YILMAZ A,JAVED O,SHAH M. Object tracking:A survey[J]. ACM Comput. Surv. , 2006,38(4) :1--45.
  • 2COMANNICIU D, RAMESH V, MEER P. Real-time tracking of non-rig- id objects using Mean Shift [ C ]//Proc. Computer Society Conference on Computer Vision and Pattern Recognition. New York:IEEE Press,2000, 2 : 142-149.
  • 3COLLINS R. Mean-Shift blob tracking through scale space[ C]//Proc. Computer Society Conference on Computer Vision and Pattern Recogni- tion. New York :IEEE Press ,2003,2:234-241.
  • 4邓金杰,肖诗斌,吕学强,等.基于多特征融合的图像检索研究[c]//北京图像图形学学会.第四届图像图形技术研究与应用学术会议论文集.北京:中国传媒大学出版社,2009:189-193.
  • 5章毓晋.图像工程[M].北京:清华大学出版社,2006.3.
  • 6OKUMA K,TALEGHANI A,FREITAS N. A boosted particle filter:mul- titarget detection and tracking [ J ]. Lecture Notes in Computer, Science, 2004,30(21 ) :28-39.
  • 7LI A P,JING Z L,HU S Q. Learning-based appearance model for proba- bilistic visual tracking[ J ]. Optical Engineering,2006,45 (7) : 177-204.
  • 8NUMMIARO K,KOLLER-MEIER E,VAN G L. An adaptive color-based particle filter[J]. Image and Vision Computing,2003,21 ( 1 ) :99-100.
  • 9贾静平,张飞舟,柴艳妹.基于核密度估计尺度空间的目标跟踪算法[J].清华大学学报(自然科学版),2009(4):595-598. 被引量:5
  • 10江帆,王贵锦,刘畅,林行刚.一种基于模型融合的行人跟踪算法[J].电视技术,2010,34(3):85-87. 被引量:6

引证文献2

二级引证文献2

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部