期刊文献+

沙漠增温效应下绿洲热量资源估算模型——以准噶尔盆地为例 被引量:1

Estimation Model of Oasis Heat Resources under Warming Effect of Desert in Junggar Basin
原文传递
导出
摘要 绿洲是干旱区荒漠生态系统中最为精华的区域,特殊的气候资源条件及其组合效应是形成绿洲特色高效农业的基础。在暖季,由于沙漠的增温效应,使绿洲的热量资源比同纬度地区更优越。以准噶尔盆地南缘古尔班通古特沙漠及石河子绿洲为对象开展研究,从时间、空间角度分析了沙漠增温影响下绿洲不同部位的热量条件、分布特点及变化规律等。并提出沙漠增温系数Z,Z可反映沙漠对与其相邻的特定地理位置的绿洲热量影响敏感程度,解释沙漠和绿洲间的热量联系及沙漠本身的热效应。借助沙漠增温系数,建立了石河子绿洲主要热量要素的估算模型,可以相对动态地估算绿洲区域不同时空尺度的热量状况。 Oasis is the most essential area of desert eco-system in arid and semi-arid regions.During warm season,heat resource of the oasis is more superior than other region in the same latitude due to the warming effect of the desert.Taking the Gurbantunggut Desert and the Shihezi Oasis in the Junggar Basin as an example,the temporal-spatial distribution and changes of oasis heat resources under warming effect of desert were analyzed.A warming coefficient(Z) was put forward to reflect the sensitivity of oasis temperature change to desert.Based on warming coefficient,a estimation model of oasis heat resources was established,and the model could estimate dynamically spatial and temporal characteristics of oasis heat resources.
作者 张凤华 赵强
出处 《中国沙漠》 CSCD 北大核心 2011年第1期149-155,共7页 Journal of Desert Research
基金 国家自然科学基金项目(30760105) 教育部新世纪优秀人才支持计划项目(NCET-09-0903) 人社部项目(2009001)共同资助
关键词 沙漠 增温效应 绿洲 热量资源估算模型 desert warming effect oasis heat resources estimation model
  • 相关文献

参考文献22

二级参考文献119

共引文献203

同被引文献22

  • 1刘德祥,董安祥,梁东升,宁惠芳.气候变暖对西北干旱区农作物种植结构的影响[J].中国沙漠,2007,27(5):831-836. 被引量:35
  • 2Alvarez-Puebla R A,Valenzuela-Calahorro C,Garrido J J. Cu( II ) retention on a humic substance[J]. Journal of Colloid and Interface Science 2004,270(1) :47 — 55.
  • 3McBride M B. Cupric ion activity in peat soil as a toxicity indicator for maize [J]. Journal of Environmental Quality, 2001, 30(1):78-84.
  • 4Belli S L,Zirino A. Behavior and calibration of the copper( II ) ion-selective electrode in high chloride media and marine wa-ters[J]. Analytical Chemistry, 1993,65(19) :2583 —2589.
  • 5Wang S, Terdkiatburana T, Tade M O. Adsorption of Cu(H ),Pb( II ) and humic acid on natural zeolite tuff in single and binary systems[J]. Separation and Purification Technolo-gy,2008,62(1):64-70.
  • 6Sheng G D,Li J X,Shao D D,et al. Adsorption of copperC H ) on multiwalled carbon nanotubes in the absence and presence of humic or fulvic acids[J]. Journal of Hazardous Materials, 2010,178(1-3):333-340.
  • 7Lu X Q,Hanna J V, Johnson W D. Evidence of chemical pathways of humification: A study of aquatic humic substances heated at various temperatures [J]. Chemical Geology,2001, 177(3-4):249-264.
  • 8Pertusatti J, Prado AGS. Buffer capacity of humic acid: Thermodynamic approach[J], Journal of Colloid and Interface Science,2007,314(2) :484-489.
  • 9Zaccone C, Soler-Rovira P,Plaza C, et al. Variability in As, Ca,Cr,K,Mn,Sr,and Ti concentrations among humic acids i-solated from peat using NaOH· Na4P2 0· and NaOH + Na4P2O7 solutions[J]. Journal of Hazardous Materials,2009, 167(1-3) :987-994.
  • 10Chen W, Westerhoff P,Leenheer J A,et al. Fluorescence exci-tation-emission matrix regional Integration to quantify spectrafor dissolved organic matter [ J]. Environmental Science &-Technology,2003,37(24) :5701一5710.

引证文献1

二级引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部