期刊文献+

大脑皮层信号作用下人体步态节律运动的探讨 被引量:4

Exploring Human Rhythmic Gait Movement in the Role of Cerebral Cortex Signal
下载PDF
导出
摘要 中枢模式发生器可产生节律性运动.目前的中枢模式发生器(CPG)建模研究可以很好地表现CPG的自激行为,但对于人脑信号的调节作用没有讨论.为了体现大脑皮层信号对于CPG网络的调控性,基于Matsuoka神经振荡器的CPG模型,对原有模型中输入刺激与网络内部参数的关联进行了复杂构建,使得模型本身各参数随输入信号的变化而变化,增强了输入信号对于网络自身的影响,令CPG网络不仅仅产生自激状态,同时能够产生自我调节的运动形式,从而体现出大脑信号的调控作用.数值模拟计算结果表明,修正后的模型随着输入刺激的变化可以产生不同模式及不同频率的运动形式,且各不同形式之间可以相互转换,从而在理论上很好地反映出大脑信号在步态节律运动过程中对步态的模式和频率起到了一定的调节作用,实现了各种步态运动之间的行为转换及恢复的功能,从理论上实现了自发节律与大脑调节性节律运动的共存性,做到大脑信号与CPG模型的统一. The rhythmic movement was a spontaneous behavior generated by central pattern generator(CPG).At present,the CPG model only showed the spontaneous behavior,it did not refer to the instruction regulation role of cerebral cortex.A revised model based on Matsuoka Neural oscillator theory was presented to better show the regulation role of cerebral cortex signal to CPG neuronal network.The complex interaction between input signal and other parameters in CPG network was established,making the every parameter of CPG itself vary with the input signal.It enhanced the effect of input signal to CPG network to make the CPG network express the self-regulation movement state instead of being limited to the spontaneous behavior,reflecting the regulation role of cerebral cortex signal.The numerical simulation showed that the revised model could generate various movement forms with different modes and frequencies,and their interchanges.It was theoretically revealed that the cerebral cortex signal could regulate the mode and frequency of gait in the course of gait movement.
出处 《应用数学和力学》 CSCD 北大核心 2011年第2期213-220,共8页 Applied Mathematics and Mechanics
基金 国家自然科学基金资助项目(10872068 10672057) 中央高校基本科研业务费专项资金资助项目
关键词 中枢模式发生器 步态运动 节律运动 大脑皮层信号 转换功能 central pattern generator(CPG) gait movement rhythmic movement cerebral cortex signal conversion function
  • 相关文献

参考文献20

  • 1Brown T G. The intrinsic factors in the act of progression in the mammal [ J ]. Proceedings of the Royal Society of London. Serges B, Containing Papers of a Biological Character, 1911, 84:308-319.
  • 2Grillner S. Some aspects on the descending control of the spinal circuits generating locomotor movements [ C ]//Herman R M, Griliner S, Stein P, Stuart D. Proceedings of an International Conference on Neural Control of Locomotion, Advances in Behavioral Biology. New York: Plenum, 1976:77-82.
  • 3Kiehn O, Butt S J. Physiological, anatomical and genetic identification of CPG neurons in the developing mammalian spinal cord[J]. Prog Neurobiol, 2003,70(4) :347-361.
  • 4Choi J T, Bastian A J. Adaptation reveals independent control networks for human walking [ J]. Nature Neuroscience, 2007, 10 : 1055-1062.
  • 5Gerasimenko Y P, Makarovskii A N, Nikitin O A. Control of locomotor activity in humans and animals in the absence of supraspinal influences [J]. Neurosci Behav Physiol, 2002, 32 ( 4 ) : 417-423.
  • 6ZHANG Ding-guo, ZHU Kuan-yi, ZHENG Hang. Model the leg cycling movement with neural oscillator[C]//Piscataway N J. IEEE International Conference on Systems, Man and Cybern. 1. Netherlands: IEEE, 2004: 740-744.
  • 7Warrick H, Cohen A H. Serotonin modulates the central pattern generator for locomotion in the isolated lamprey spinal cord[J]. Biol,1985,116: 27-46.
  • 8ZHANG Ding-guo, ZHU Kuan-yi. Modeling biological motor control for human locomotion with function electrical stimulation[J]. Biol Cybern, 2007, 96( 1 ) : 79-97.
  • 9Marder E, Bucher D. Central pattern generators and the control of rhythmic movements[J]. Current Biology, 2001, 11(23): 986-996.
  • 10Zehr E P, Fujita K, Stein R B. Regulation of arm and leg movement during human locomotion [J]. The Neuroscientist, 2004, 10(4) :347-361.

二级参考文献34

  • 1王如彬,张志康,余婧.关于注意和记忆的神经动力学机制[J].力学学报,2006,38(6):816-824. 被引量:8
  • 2Brown I E, Loeb G E. "preflexes"-programmable, high-gain, zero-delay intrinsic responses of perturbed musculoskeletal systerms[J]. Soc Neurosci Abstr, 1995,21:562.9.
  • 3John Schmitt, Philip Holmes. Mechanical models for insect locomotion:Dynamics and stability in the horizontal plane Ⅰ[J]. Theory Bio Cybern,2000,83:501 - 515.
  • 4Ting L H, Blickhan R, Full R J. Dynamic and static stability in hexapedal runners[J]. J Exp Bioi,1994,197:251 - 269.
  • 5Ruina A. Non-holonomic stability aspects of piecewise holonomic systerms[J]. Rep Math Phys, 1998,42(1/2):91 - 100.
  • 6Schmitt J, Holmes P. Mechanical models for insect locomotion: stability and parameter studies[J]. Physica D, 2001,156 (1 2):139 - 168.
  • 7Schmitt J, Garcia M, Razo R C, Holmes P, Full R J. Dynamics and stability of legged locomotion in the horizontal plane: a testing case using insects[J]. Biol Cybern, 2002,86 : 343 - 353.
  • 8Wagatsuma H, Yamaguchi Y. Neural dynamics of the cognitive map in the hippocampus [J].Cognitive Neurodynamics ,2007,1 ( 2 ) : 119-141.
  • 9Igarashi Jun, Hayashi Hatsuo, Tateno Katsumi. Theta phase coding in a network model of the entorhinal cortex layer Ⅱ with entorhinal-hippocampal loop connections [J]. Cognitive Neurodynamics, 2007,1 ( 2 ) : 169-184.
  • 10WANG Ru-bin, ZHANG Zhi-kang, DUAN Yun-bo. Nonlinear stochastic models of neurons activities[J]. Neurocomputing ,2003,51:401-411.

共引文献9

同被引文献40

引证文献4

二级引证文献11

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部