期刊文献+

分层不动点及变分不等式的粘性方法及应用 被引量:7

Viscosity Method for Hierarchical Fixed Point and Variational Inequalities With Applications
下载PDF
导出
摘要 介绍了处理变分不等式问题的一种分层不动点的粘性方法.这一方法所涉及的映像是非扩张的,而其解是从另一非扩张映像的不动点集中求出.在文末,还把这一结果应用于研究单调变分不等式问题、凸规划问题、分层极小化问题及在不动点集上的二次极小化问题. A viscosity method for a hierarchical fixed point approach to variational inequality problems was presented,which was used to solve variational inequalities where the involving mappings were nonexpansive and the solutions were sought in the set of the fixed points of another nonexpansive mapping.As applications,the results were utilized to study the monotone variational inequality problem,convex programming problem,hierarchical minimization problem and quadratic minimization problem over fixed point sets.
出处 《应用数学和力学》 CSCD 北大核心 2011年第2期232-240,共9页 Applied Mathematics and Mechanics
基金 宜宾学院自然科学基金的资助(2009Z03)
关键词 分层不动点 非扩张映像 不动点 粘性逼近 分层极小化 hierarchical fixed point nonexpansive mapping fixed point viscosity approximation hierarchical minimization
  • 相关文献

参考文献18

  • 1Goebel K, Kirk W A. Topics in Metric Fixed Point Theory [ M ]. Cambridge Studies in Advanced Mathematics. 28. Cambridge: Cambridge University Press, 1990.
  • 2Byrne C. A unified treatment of some iterative algorithms in signal processing and image reconstruction[ J]. Inverse Problems, 2004, 20( 1 ) : 103-120.
  • 3Censor Y, Motova A, Segal A. Perturbed projections and subgradient projections for the multiple-sets split feasibility problem [ J ]. J Math Anal Appl, 2007, 327 (2) : 1244-1256.
  • 4Cianciaruso F, Marino G, Muglia L, Yao Y. On a two-step algorithm for hierarchical fixed points and variational inequalities[ J]. J Inequalities and Appl, 2009, Article ID 208592, 13 pages, doi: 10.1155/2009/208692.
  • 5Cianciaruso F, Colao V, Muglia L, Xu H K. On an implicit hierarchical fixed point approach to variational inequalities [ J ]. Bull Austral Math Soc, 2009, 80 ( 1 ) : 117-124.
  • 6Malnge P E, Moudafi A. Strong convergence of an iterative method for hierarchical fixed point problems[J]. Pacific J Optim, 2007,3(3) : 529-538.
  • 7Marino G, Xu H K. A general iterative method for nonexpansive mappings in Hilbert space [J]. JMathAnalAppl, 2006, 318(1): 43-52.
  • 8Moudafi A. Krasnoselski-Mann iteration for hierarchical fixed point problems [ J ]. Inverse Problems, 2007, 23(4): 1635-1540.
  • 9Solodov M. An explicit descent method for bilevel convex optimization [ J ]. J Convex Anal, 2007, 14(2): 227-237.
  • 10Yao Y, Liou Y C. Weak and strong convergence of Krasnoselski-Mann iteration for hierarchi- cal fixed point problems[J]. Inverse Problems, 2008, 24( 1 ) : 15015-15022.

同被引文献77

  • 1何诣然.一个关于混合变分不等式问题的投影算法[J].数学物理学报(A辑),2007,27(2):215-220. 被引量:10
  • 2丁协平,林炎诚,姚任之.解变分不等式的三步松弛混合最速下降法[J].应用数学和力学,2007,28(8):921-928. 被引量:8
  • 3Han W, Reddy B. On the finite element method for mixed variational inequalities arising in elastoplasticity[ J]. SIAM J Numer Anal, 1995, 32(6) : 1778-1807.
  • 4Cohen G. Nash equilibria: gradient and decomposition algorithms [J ]. Large Scale Systems, 1987, 12(2) : 173-184.
  • 5Facchinei F, Pang J S. Finite-Dimensional Variational Inequalities and Complementary Problems [ M ] New York- Springer-Verlag, 2003.
  • 6Iusem A N, Svaiter B F. A variant of Korpelevich' s method for solving variational inequalities with a new search strategy[J]. Optimization, 1997, 42(4) : 309-321.
  • 7Xia F Q, Huang N J, Liu Z B. A projected subgradient method for solving generalized mixed variational inequalities[J]. Oper Res Lett, 2008, 36(5 ): 537-542.
  • 8Konnov I. A combined relaxation method for a class of nonlinear variational inequalities[ J]. Optimization, 2002, 51( 1 ): 127-143.
  • 9Mainge P E. Projected subgradient techniques and viscosity methods for optimization with variational inequality constraints [ J ]. European J Oper Res, 2010, 205 ( 3 ) : 501-505.
  • 10Anh P N, Muu L D, Strodiot J J. Generalized projection method for non-Lipschitz multivalued monotone variational inequalities[ J]. Acta Math Vietnam, 2009, 34( 1 ) : 67-79.

引证文献7

二级引证文献10

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部