期刊文献+

基于粒子群的关键帧提取算法 被引量:4

Key frame extraction based on particle swarm optimization
下载PDF
导出
摘要 关键帧提取是基于内容的视频检索中的重要一步,为了能够有效地提取出不同类型视频的关键帧,提出一种基于粒子群的关键帧提取算法。该方法首先提取出视频中每帧的全局运动和局部运动特征,然后通过粒子群算法自适应地提取视频关键帧。实验结果表明,采用该算法对不同类型的视频提取出的关键帧具有较好的代表性。 Key frame extraction was an important step in video retrieval.In order to effectively extract key frames of different video types,a key frame extraction algorithm based on particle swarm was proposed in this paper.This method first extracted the global motion and local motion features in each frame,and video key frame was extracted by Particle Swarm Optimization(PSO) adaptively.The experimental results show that the key frame extraction algorithm for different types of video is more representative.
出处 《计算机应用》 CSCD 北大核心 2011年第2期358-361,共4页 journal of Computer Applications
基金 国家自然科学基金资助项目(60673190) 江苏省自然科学基金资助项目(BK2009199)
关键词 视频检索 关键帧提取 粒子群 运动特征 video retrieval key frame extraction Particle Swarm Optimization(PSO) motion characteristic
  • 相关文献

参考文献10

二级参考文献38

  • 1张鹏,王润生.基于视点转移和视区追踪的图像显著区域检测[J].软件学报,2004,15(6):891-898. 被引量:53
  • 2Liu Li-jie, Fan Guo-liang. Combined key-frame extraction and object-based video segmentation[ J]. IEEE Transactions on Circuits and Systems for Video Technology, 2005 ,IS(7) :869-884.
  • 3Itti L, Koch C. Feature combination strategies for saliency-based visual attention systems [ J ]. Journal of Electronic Imaging, 2001, 10(1) :161-169.
  • 4Ansgar R. Koene,Li Zhao-ping. Feature-specific interactions in salience from combined feature contrasts: Evidence for a bottom-up saliency map in V1 [J]. Journal of Vision,2007,7(7) : 1-14.
  • 5Ma YF, Hua X S. A generic framework of user attention model and its application in video summarization [J]. IEEE Transactions on Multimedia,2005,10(7 ) :907-919.
  • 6Yun Zhai, Mubarak Shah. Visual attention detection in video sequences using spatiotemporal cues[ A]. In:Proceedings of 14th Annual ACM International Conference on Multimedia [ C ], Santa Barbara, CA, USA, 2006 : 815 - 824.
  • 7Wu Feng,Proc the Data Compression Conference'98,1998年,546页
  • 8袁亚湘,非线性规划数值方法,1993年
  • 9Zhang HongJiang, Wang J Y A, Altunbasak Y. Content based video retrieval and compression: A united solution[A]. In: IEEE International Conference on Image Processing, Washington, DC, 1997. 13~16.
  • 10Liu Tianming, Zhang Hongjiang, Qi Feihu. A novel video key frame extraction algorithm based on perceived motion energy model[J]. IEEE transactions on circuits and systems for video technology, 2003, 13(10): 1006~1013.

共引文献77

同被引文献31

  • 1王方石,须德,吴伟鑫.基于自适应阈值的自动提取关键帧的聚类算法[J].计算机研究与发展,2005,42(10):1752-1757. 被引量:32
  • 2魏维,游静,刘凤玉,许满武.语义视频检索综述[J].计算机科学,2006,33(2):1-7. 被引量:18
  • 3徐理东,林行刚.视频抖动矫正中全局运动参数的估计[J].清华大学学报(自然科学版),2007,47(1):92-95. 被引量:9
  • 4黄灵林.王虹.基于MPEG-7的视频数据库存储检索技术研究[D].武汉理工大学,2009:12~13.
  • 5Fisher M A,Bolles R C. Random Sample Consensus: A Paradigm for Model Fitting with Application to hnage Analysis and Automated Cartography. Communications of the ACM, 1981,24(6):381-395.
  • 6Li J, Pan Q, Yang T, et al. Automated Features Points Man- agement for Video Mosaic Construction [C]. Information Technology and Applications (ICITA). Sydney Australia: IEEE Press, 2005:760-763.
  • 7张倩,占君,陈珊.MatLab图像函数及其应用【M].北京:电子工业出版社.2011.
  • 8XIONG Ziyou,TIAN Qi,RUI Yong,et al. Semantic retrieval of video-re- view of research on video retrieval in meeting, movies and broadcast news ,and sports [ J ]. IEEE Signal Processing Magine, 2006,23 ( 2 ) : 18-27.
  • 9HARITAOGLU I,HARWOOD D,DAV1S L S. W4: Real-time surveil- lance of people and their activities[ J ]. 1EEE Transactions on Pattern A- nalysis and Machine Intelligence,2000,22 (8) :809-830.
  • 10韩龙.移动环境下视频拼接技术的研究[D].安徽:中国科学技术大学2010.

引证文献4

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部