期刊文献+

改进的半监督聚类在MEG脑机接口中的应用 被引量:1

Application of improved semi-supervised clustering in MEG brain computer interface
下载PDF
导出
摘要 脑磁信号(MEG)作为一种新的脑机接口(BCI)输入信号,含有手运动方向的模式信息。鉴于半监督聚类融合了训练数据先验知识的优势,提出一种基于训练中心的半监督模糊聚类算法。该算法分为降维和改进的半监督聚类,采用主成分分析和线性判别分析将高维数据降到低维,改进的半监督聚类在对训练数据进行模糊聚类的基础上,将得到的聚类中心加权到测试数据聚类过程中,以增加测试数据聚类中心的鲁棒性。结果表明,该算法识别率较高,平均识别率达到了55.1%,优于BCI竞赛Ⅳ的最好结果46.9%。 The Magneto-Encephalo-Graphy(MEG) can be used as an input signal for Brain Computer Interface(BCI),which contains the pattern information of the hand movement direction.In view of the fact that the semi-supervised clustering combines the advantages of training data prior knowledge,a semi-supervies fuzzy clustering algorithm based on training center was put forward.The algorithm was divided into lower-dimensional and improved semi-supervised clustering.Principal component analysis and linear discriminant analysis were used to reduce the data from high-dimension to low-dimension.Improved semi-supervised clustering based on fuzzy clustering for the training data added the training center in proportion to the test data center.The experimental results show that the average recognition rate of the proposed algorithm reaches to 55.1%,higher than that of the winner of the 2008 competition Ⅳ.
作者 周丽娜 吕萌
出处 《计算机应用》 CSCD 北大核心 2011年第2期416-419,共4页 journal of Computer Applications
关键词 脑机接口 脑磁图 半监督 模糊聚类 Brain Computer Interface(BCI) Magneto-Encephalo-Graphy(MEG) semi-supervised fuzzy clustering
  • 相关文献

参考文献15

  • 1BLANKERTZ B, MULLER K, KRUSIENSKI D J, et al. The BCI competition Ⅲ: Validating alternative approaches to actual BCI problems[ J]. IEEE Transactions on Neural Systems and Rehabilitation Engineering, 2006, 14(2) : 153 - 159.
  • 2GEORGOPOULOS A P, SCHWARTZ A B, KETTNER R E. Neuronal population coding of movement direction[ J]. Science, 1986, 233(4771): 1416 - 1419.
  • 3徐宝国,宋爱国.基于小波包变换和聚类分析的脑电信号识别方法[J].仪器仪表学报,2009,30(1):25-28. 被引量:52
  • 4吴婷,颜国正,杨帮华.基于小波包分解的脑电信号特征提取[J].仪器仪表学报,2007,28(12):2230-2234. 被引量:24
  • 5MELL/NGER J, SCHALK G, BRAUN C, et al. An MEG-based Brain- Computer Interface (BCI)[J]. Neurolrnage, 2007, 36(3): 581-593.
  • 6WALDERT S, BRAUN C, PREISSL H, et al. Decoding perfolmance for hand movement: EEG vs MEG[ C]// 29th Annual International Conference of IEEE Engineering in Medicine and Biology Society. Wahington DC: IEEE Computer Society, 2007:5346-5348.
  • 7WALDERT S, PREISSL H, DEMANDT E, et al. Hand movement direction decoded from MEG and EEG[J]. Journal of Neuroscience, 2008, 28(4) : 1000 - 1008.
  • 8BRADBERRY T J, RONG F, CONTRERAS-VIDAL J L. Decoding center-out hand velocity from MEG signals during visuomotor adaptation[ J]. NeuroImage, 2009, 47(4) : 1691 - 1700.
  • 9BASU S, BSNERJEE A, MOONEY E R, et al. Active semi-supervision for pariwise constrained clustering[ C]// Proceedings of the SIAM International Conference on Data Mining. Lake Buena Vista: Society for Industrial and Applied Mathematics, 2004:333 -344.
  • 10KLEIN D, KAMVAR S, MANNING C. From instance-level constraints to space-level constraints: Marking the most of prior knowledge in data clustering[ C]// Proceedings of the 19tb International Conference on Machine Learning. San Francisco: Morgan Kaufmann Publishers Inc, 2002:307 -314.

二级参考文献53

  • 1袁玉波,严杰,徐成贤.多项式光滑的支撑向量机[J].计算机学报,2005,28(1):9-17. 被引量:81
  • 2VIRTS J. The third international meeting on brain-computer interface technology: making a difference [ J ]. IEEE Trans Neural Syst. Rehabil. Eng. , 2006,14 ( 2 ) : 126-127.
  • 3VAUGHAN T M. Brain-computer interface technology: a review of the second international meeting [ J ]. IEEE Trans Neural Syst. Rehabil. Eng. , 2003, 11 (2) : 94-109.
  • 4WOLPAW J R, BIRBAUMER N, HEETDERKS W, et al. Brain-computer interface technology: a review of the first international meeting [ J ]. IEEE Trans. Rehabil. Eng. , 2000,8(2) :164-173.
  • 5WOLPAW J R, BIRBAUMER N, MCFARLAND, et al. Brain-computer interface for communication and control [ J ]. Clinical Neurophysiology, 2002,113 (6) :767-791.
  • 6BLANKERTZ B, MULLER K R, et al. The BCI competition III: validating alternative approaches to actual problems [ J ]. IEEE Trans Neural Syst. Rehabil. Eng., 2006,14 (2) : 153-159.
  • 7BLANKERTZ B, MULLER K R, CURIO G, et al. BCI competition 2003--progress and perspectives in detection and discrimination of EEG single trials [ J ]. IEEE Trans. Biomed. Eng. , 2004,51 (6) :1044-1051.
  • 8PFURSTCHELEER G, L da SILVA FH. Event-related EEG/MEG synchronization and desynchronizaiton: basic principles [ J ]. Clinical Neurophysiology, 1999, 110 (11) :1842-1857.
  • 9PFURSTCHELLER G, NEUPER C. Motor imagery and direct brain-computer communication [ J ]. Proc IEEE, 2001,89(7) :1123-1134.
  • 10YANG B H, YANA G ZH, YAN R G, et al. Adaptive subject-based feature extraction in brain-computer interfaces using wavelet packet best basis decomposition [ J ]. Medical Engineering & Physics, 2007,29( 1 ) :48-53.

共引文献73

同被引文献11

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部