期刊文献+

概念层次中基于粗糙集的优化可信规则获取 被引量:2

Optimal credible rules based on rough sets in concept hierarchies
下载PDF
导出
摘要 随着系统中数据量剧增,规则太多以及不同决策者对规则有不同层次需求等问题,概念层次提供了一种解决方法。讨论条件属性具有概念层次的情况下,利用粗糙集理论分析属性在不同层次组合下的正域和规则关系,自顶向下提出了概念层次中基于粗糙集的优化可信规则获取的算法。该算法改进了现有的属性约简策略,借助描述子实现属性约简并获取优化可信规则。考虑到层次上正域为空和正域没有新增对象的特殊情况,提高了规则获取的效率。最后通过实例分析说明该算法的可行性。 The concept hierarchies provide a new way to solve such problems as the data are increasing too fast,there are so many rules,and different decision makers need obtain some rules from different hierarchies.In the context that every condition attribute had a concept hierarchy,the relations of positive regions and rules from different levels were analyzed based on rough set theory.Then,the algorithm of optimal credible rules based on rough sets in concept hierarchies was proposed,which was along with concept hierarchies from top to down.The algorithm improved the existing reduction strategy,realized the reduction and obtained the optimal credible rules by descriptors.Besides,it also considered there was null or not a new object in the positive region,and the effectiveness of extracting rules was improved.Finally,the feasibility of this algorithm was validated by an example.
作者 梁德翠 胡培
出处 《计算机应用》 CSCD 北大核心 2011年第2期493-497,共5页 journal of Computer Applications
关键词 概念层次 描述子 属性约简 优化可信规则 粗糙集 concept hierarchies descriptor attribute reduction optimal credible rule rough set
  • 相关文献

参考文献14

  • 1FENG QINRONG, MIAO DUOQIAN, CHENG YI. Hierarchical decision rules mining[J]. Expert Systems with Applications, 2010, 37 (3): 2081 -2091.
  • 2刘发升,杨炳儒.一种基于粗糙集的多层次、逐步求精的发掘算法[J].计算机工程与应用,1999,35(5):11-12. 被引量:17
  • 3LIN T Y. Generating concept hierarchies/networks: Mining additional semantics in relational data[ C]// PAKDD 2001, LNCS 2035. Berlin: Spring-Verlag, 2001:174 - 185.
  • 4KAUFMAN K A, MICHALSKI R S. A method for reaoning with structured and continuous attributes in the INLEN-2 muhistrategy knowledge discovery system[ C]// Proceedings of the Second International Conference on Knowledge Discovery and Data Mining. Menlo Park: AAAI Press, 1996:232 -237.
  • 5PAWLAK Z. RoughSets[M]. New York: ACM, 1992.
  • 6HU XIAOHUA, CERCONE N. Discovering maximal generalized decision rules through horizontal and vertical data reduction[J]. Computational Intelligence, 2001, 17(4): 685-702.
  • 7IM S, RAS Z W, TSAY L S. Multi-granularity classification rule discovery using ERID [ C ]// RSKT2008, LNCS 5009. Berlin: Spring-Verlag, 2008:491-499.
  • 8HONGTP, LINC E, LIN J H, et al. Leaminga coverage set of muhiple-level certain and possible rules by rough sets[ C] // Proceedings of the IEEE International Conference on Systems. Washington, DC: IEEE Computer Society, 2003:2605-2610.
  • 9HONG T P, LIN C E, LIN J H, et al. Learning cross-level certain and possible rules by rough sets[ J]. Expert Systems with Applications, 2008, 34(3) : 1698 - 1706.
  • 10HONG T P, LIOU Y L, WANG S L. Fuzzy rough sets with hierarchical quantitative attributes[ J]. Expert systems with Applications, 2009, 36(3): 6790-6799.

二级参考文献10

共引文献17

同被引文献26

  • 1仇国芳,陈劲.概念格的规则约简与属性特征[J].浙江大学学报(理学版),2007,34(2):158-162. 被引量:7
  • 2Zhang B,Zhang L.Theory and applications of problem solving [M].New York,NY,USA:Elsevier,1992.
  • 3Pawlak Z.Rough sets[J].International Journal of Computer and Information Sciences,1982,11(5):341-356.
  • 4Lin T Y Generating concept hierarchies/networks:Mining additional semantics in relational data[C] //Proceedings of the 5th Dacific-Asia Conference on Knowledge.Berlin,Germany: Springer-Verlag,2001:174-185.
  • 5Hu X H,Cercone N.Discovering maximal generalized decision rules through horizontal and vertical data reduction[J].Computational Intelligence,2001,17(4):685-702.
  • 6Im S,Ras Z W,Tsay L S.Multi-granularity classification rule discovery using ERID[C] //Proceedings of the 3rd Interational Conference on Rough Sets and Knowledge Technology.Berlin, Genmany:Springer-Verlay,2008:491-499.
  • 7Hong T P,Lin C E,Lin J H,et al.Learning cross-level certain and possible rules by rough sets[J].Expert Systems with Applications, 2008,34(3):1698-1706.
  • 8Hong T P,Liou Y L,Wang S L.Fuzzy rough sets with hierarchical quantitative attributes[J].Expert systems with Applications, 2009,36(3):6790-6799.
  • 9Feng Q R,Miao D Q,Cheng Y.Hierarchical decision rules mining [J].Expert Systems with Applications,2010,37(3):2081- 2091.
  • 10Ziarko W.Variable precision rough set model[J].Journal of Computer and System Sciences,1993,46(1):39-59.

引证文献2

二级引证文献10

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部