期刊文献+

基于NSCT变换的图像融合及鲁棒性分析 被引量:6

Image Fusion Method Based on NSCT and Robustness Analysis
下载PDF
导出
摘要 红外与可见光的图像融合技术可以有效提高图像的对比度和清晰度,增强夜视效果。非降采样的Contourlet变换在图像融合领域取得了一定的研究成果。提出一种基于区域标准差比例加权的非降采样Contourlet变换的图像融合方法,并对该方法的鲁棒性进行分析。首先对来自同一场景的配准后的红外与可见光图像进行非降采样Contourlet变换;其次对近似分量取平均,高频细节分量按照区域标准差比例加权求和;然后通过非降采样Contourlet反变换得到融合图像;最后通过大量实验,与Laplace变换、小波变换及Contourlet变换的结果进行比较,并通过噪声实验对各变换进行了鲁棒性分析。结果表明:非降采样Contourlet变换可以获得较好的融合效果,并且具有较高的鲁棒性。 Infrared and visible image fusion technology can effectively improve the image contrast and clarity, enhance night vision. Non-subsampled Contourlet transform (NSCT) in image fusion field has made some achievements. A regional standard deviation-weighted image fusion method based on non-subsampled Contourlet transform was proposed, and the robustness of the method was analyzed. Firstly, the registered infrared and visible images from the same scene were transformed by non-subsampled Contourlet transform, followed by approximate weight was averaging and weighted summing of high-frequency detail components in accordance with the proportion of the regional standard deviation and then the fusion image is obtained by inverse non-subsampled Contourlet transform, and then the fusion images were compared with the results obtained by Laplace transformation, wavelet transformation and Contourlet transformation through a large number of experiments, and the robustness analysis was done through the noise test. The results show that: non-subsampled Contourlet transform can achieve better fusion effect, and high robustness.
出处 《红外技术》 CSCD 北大核心 2011年第1期45-48,55,共5页 Infrared Technology
基金 北京市优秀人才培养资助项目 编号:2009D005003000006 北京市教委面上项目 编号:KM201010011002
关键词 图像融合 视觉增强 非采样CONTOURLET变换 红外图像 鲁棒性 image fusion, visual enhancement, NSCT, infrared image, Robustness
  • 相关文献

参考文献12

  • 1Krista Amolins,Yun Zhang, Peter Dare. Wavelet based image fusion techniques -An introduction review and comparison[J]. ISPRS Journal of Photogrammetry &Remote Sensing, 2007, 62: 249-263.
  • 2Y. M. Lu and M. N. Do, Multidimensional directional filter banks and surfacelcts[C]//IEEE Transactions on Image Processing, 2007, 16(4): 918-931.
  • 3Guest Editorial. Advances in vision algorithms and systems beyond the visible spectrum[J]. Computer Vision and Image understanding, 2006, 106: 145-147.
  • 4Pradhan P.S, King R.L., Younan N.H., et al. Eestimation of the Number of Decomposition Levels for a Wavelet-based Multiresolution Multisensor Image Fusion Geoscience and Remote Sansing[C]//IEEE Transactions,2006, 44(12): 3674-3686.
  • 5Guest editorial.Image fusion: Advances in the state of the art[J]. Information Fusion, 2007(8): 114-118.
  • 6张俊举,邢素霞,常本康,钱芸生.基于运动判断的动态帧间滤波方法[J].红外技术,2004,26(5):33-36. 被引量:3
  • 7M. N. Do and M. Vetterli, The contourlet transform: an efficient directional multiresolution image representation[C]//lEEE Transactions Image on Processing, 2005, 14(12): 2091-2106.
  • 8James W. Davis, Vinay Sharma, Backgroud-subtraction using contourbased fusion of thermal and visible imagery[J]. Computer vision and Image Understanding, 2007, 106: 162-182.
  • 9A.L.Cunha, J.Zhou, M.N.Do. The nonsubsampled contourlet transform: theory,design and applications[C]//1EEE Trans. Image Proc., 2005: 1-17.
  • 10常霞,焦李成,贾建华.基于非下采样Contourlet的多传感器图像自适应融合[J].计算机学报,2009,32(11):2229-2238. 被引量:18

二级参考文献26

共引文献55

同被引文献53

  • 1胡良梅,高隽,何柯峰.图像融合质量评价方法的研究[J].电子学报,2004,32(F12):218-221. 被引量:100
  • 2陶冰洁,王敬儒,许俊平.基于小波分析的不同融合规则的图像融合研究[J].红外技术,2006,28(7):431-434. 被引量:30
  • 3苗启广,王宝树.基于改进的拉普拉斯金字塔变换的图像融合方法[J].光学学报,2007,27(9):1605-1610. 被引量:50
  • 4O'Shea P.A fast algorithm for estimating the parameters of a quadratic FM signal[J].IEEE Transaction on Signal Processing,2004,52(2):385-393.
  • 5Chipman L J, Orr T M, Graham L N. Wavelets and image fusion[A]. Proc of Int. Conf on Image Processing: IEEE Computer Society[C], 1995: 248-251.
  • 6Do M N, Vetterli M. The contourlet transform: an efficient directional multi-resolution image representation[J]. IEEE Transactions on Image Processing, 2005, 14(12):2091-2106.
  • 7Cunha A L, Zhou J P, Do M N. The Nonsubsampled Contourlet Transform: Theory, design, and applications [J]. IEEE Transactions on Image Processing, 2006, 5(10): 3089-3101.
  • 8Do M N, Vetterli M. The contourlet transform: an efficient directional multiresolution image representation[J]. IEEE Transactions on Image Processing, 2005, 14(12):2091-2106.
  • 9Yi Chai, Huafeng Li,Zhaofei Li. Multifocus image fusion scheme using focused region detection and multiresolution[J]. Optics Communications 2011,284: 4376-4389.
  • 10Huafeng Li, Yi Chai, Zhaofei Li. Multi-focus image fusion based on nonsubsampled contourlet transform and focused regions detection [J]. Optics Communications 2011,284:4376-4389.

引证文献6

二级引证文献13

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部