期刊文献+

新学习科学的基础 被引量:4

Foundations for a New Science of Learning
下载PDF
导出
摘要 与其他物种相比,人类学习是由可学技能的范围和复杂性以及所能达到的抽象程度来区分的。人也是唯一一个形成了教师、学校和课程这样一种正规方式去增强学习的物种。人类婴儿对人和人的行为有着强烈的兴趣,并且他们具有受社会互动所影响的强大的内隐学习机制。神经系统科学家开始理解隐含在学习中的大脑机制,以及用于感知与行为的共享大脑系统是如何支持社会学习的。机器学习算法正在被开发出来,它允许机器人和计算机进行自主学习。来自于不同领域的新见解被汇聚到一起,以创建一种可以改变教育实践的新学习科学。 Human learning is distinguished by the range and complexity of skills that can be learned and the degree of abstraction that can be achieved compared with those of other species. Homo sapiens is also the only species that has developed formal ways to enhance learning: teachers, schools, and curricula. Human infants have an intense interest in people and their behavior and possess powerful implicit learning mechanisms that are affected by social interaction. Neuroscientists are beginning to understand the brain mechanisms underlying learning and how shared brain systems for perception and action support social learning. Machine learning algorithms are being developed that allow robots and computers to learn autonomously. New insights from many different fields are converging to create a new science of learning that may transform educational practices.
出处 《远程教育杂志》 CSSCI 2011年第1期19-25,共7页 Journal of Distance Education
基金 教育部人文社会科学研究规划项目"学习科学视域下的‘问题解决学习’设计研究"(项目批准号:09YJA880119)的阶段性成果
关键词 学习科学 神经科学 脑机制 学习算法 Learning science Neuroscience Brain mechanism Learning algorithm.
  • 相关文献

参考文献90

  • 1J. M. Alhnan, Evolving Brains [M]. Freeman, NewYork, 1999,.
  • 2S. R. Quartz, T. J. Sejnowski, Behav. Brain Sci [M]. 1997.20, 537.
  • 3R. A. Jacobs, M. Dominguez, Neural Comput[J]. 003.15, 761 .
  • 4P. K. Kuhl, K. A. Williams, F. Lacerda, K. N. Stevens, B. Lindblom, Science [J]. 1992.255, 606.
  • 5J. Maye, J. F. Werker, L. Gerken, Cognition [J]. 2002.82, BIOI. I.
  • 6J. R. Saffran, R. N. Aslin, E. L. Newport, Science[J]. 1996.274, 1926. I.
  • 7A. Gopnik et al. , Psychol. Rev[J]. 2004.111, 3.
  • 8T. M. Mitchell, Machine Learning [ M ]. ( Mc Graw - Hill, NewYork, 1997).
  • 9R. Douglas, T. Sejnowski, " Future challenges for the science and engineering of learning," www. nsf. gov/sbe/SLCWorkshopReportjan08.pdf.
  • 10N. J. Butko, I. R. Fasel, J. R. Movellan, in Proceedings of the 5th IEEE International Conference on Development and Learning, Bloomington, IN, 31 May to 3 June 2006.

同被引文献36

引证文献4

二级引证文献62

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部