期刊文献+

一种基于压缩感知的视频编解码与传输方案 被引量:1

A video scheme for compression and transmission based on compressed sensing
下载PDF
导出
摘要 压缩感知是近几年信号处理理论的重大突破,它打破了传统的奈奎斯特采样定理的限制,采用一种数学投影的方法对信号进行整体的测量,从而能够以较少的采样值来进行原始信号的恢复。将压缩感知应用于视频编解码中,并结合均匀量化和编码将出来的码流在无线信道中传输,进而得到了比现有编码方法好的特性,即收到的视频质量随着无线信道误码率增大的而呈均匀的下降。 Compressed sensing is becoming a major breakthrough in signal processing theory in recent years.It broke the traditional Nyquist sampling theory constraints,instead,it used a mathematical projection method for measuring signal in a overall way.As a result,it reduced the sample value amounts for the recovery of the original signal.This paper deals with video compression case by taking care of compressed sensing,transmit the video streaming formed in the preceding way in the wireless channel combined with uniform quantization and coding,in this way it gets better properties than the existing coding,that is to say,the received video quality decreased smoothly as the radio channel bit error rate increased.
出处 《信息技术》 2011年第1期40-43,48,共5页 Information Technology
关键词 压缩感知 视频编解码 鲁棒传输 compressed sensing video codec robust transmission
  • 相关文献

参考文献9

  • 1David Donoho. Compressed sensing[ J] IEEE Trans. On Information Theory, April 2006 Emmanuel,2006,52 (4) : 1289 - 1306.
  • 2Candes. Compressive sampling[ Z] Int. Congress of Mathematics, Madrid, Spain, 2006(3) :1433 - 1452.
  • 3Wakin M, Laska J, Duarte M,et al. Compressive imaging for video representation and coding [ C]//Proc, Picture Coding Symposium ( PCS), April 2006.
  • 4Lu Gan, Thong Do,Trac Tran. Fast compressive imaging using scrambled block Hadamard ensemble [ Z ]. Proceedings of EUSIPCO - 2008.
  • 5Figueiredo M A T, Nowak R D,Wright S J. Gradient Projection for Sparse Reconstruction : Application to Compressed Sensing and Other Inverse Problems[J]. IEEE Journal of Selected Topics in Signal Processing, 2007,1 (4) :586 - 598.
  • 6Stankovie V, Stankovic L, Cheng S. Compressive Video Sampling [C]// Prec. of the European Signal Processing Conf. (EUS1P- CO), Lausanne, Switzerland, August 2008.
  • 7Park J, Wakin M. A Muhiscale Framework for Compressive Sensing of Video[ C]// Proc. of the Picture Coding Symposium (PCS), Chicago, Illinois, May 2009.
  • 8Xie Xiaochun, Yu Lingjuan. A New Video Codec Based on Compressed Sensing[ Z]. 978-1 -4244-41314)/09/,2009 IEEE.
  • 9Scott Pudlewski, Tommaso Melodia. On the Performance of Compressive Video Streaming for Wireless Multimedia Sensor Networks [ Z]. Wireless Networks and Embedded Systems Laboratory.

同被引文献4

引证文献1

相关作者

内容加载中请稍等...

相关机构

内容加载中请稍等...

相关主题

内容加载中请稍等...

浏览历史

内容加载中请稍等...
;
使用帮助 返回顶部